Lab 25 a and b – Fun with Stacks

Background

The stack simulates any kind of line situation in which there is a single point for entry and exit. Think of a discard deck of cards or other similar kind of “pile”.

Detail

You will implement 3 stack classes which will contain a Stack of Card objects. Here are the Card and Deck classes you will need. Each of these classes will have the following methods (based on the Stack ADT “rules”):

1. A constructor that sets-up this particular stack implementation.

2. A push method which adds an object to the stack. Returns a true or false depending on the success of the push operation. (Technically, unless the stack has a limited amount of space available, this will always return true.)

3. A pop method that removes the top object from the stack and returns the object to the calling method.

4. A peek method which returns a copy of the top object in the stack.

5. An isEmpty method that returns true if the queue is empty.

Your three classes will be all called Stack. You should make three different directories, one for each type of Stack.

The three implementations will include:

Array – an array implementation of a Stack. You may either make an unlimited stack which will copy an array from one array to another if you need to push an element on and there is no room or you may simply return false if your Stack does not have room for the new element.

ArrayList – an arrayList implementation of a Stack.

LinkedList – a linked list implementation of a Stack.

Part 1 (Due Tuesday April 26, 2005):

1. Create the stubs and drivers for your Stack. Since all of your stacks will be called the same thing, your driver should test Stacks, or in other words should test what stacks are supposed to do without regard to the underlying code.

2. Your methods in Stack should not do any printing. This should all be done in your Driver. You should make it clear (by displaying the values) what object you are adding to your stack and what object you are removing from the stack. If you print for debugging purposes, make sure that code is deactivated before submission.

Submission

Submit part 1 by turning your code into the Blackboard Assignments for this lab. Since we are dealing with 3 programs with the same name, there will be three assignments, one for the Driver and the Array Stack, one for the ArrayList Stack and one for the LinkedList Stack. Your stubs must be working stubs; in other words the programs should compile and run, although you will only have constant return values.

Part 2 (Due Thursday April 28, 2005):

3. Implement your Stack classes.

Submission

Submit all three Stack classes to the Blackboard assignment as before. You do not need to submit your driver. Print the code for each of your classes and turn that in at the beginning of lecture on Thursday.

Note: In testing, we will use our own driver. Your classes must match our driver which means that you must follow the input and output specified exactly. Any methods used other than the ones specified should be declared as private.

