Name: __

LAB 15: EXPERIMENTING WITH ABSTRACT CLASSES AND INTERFACES

Advanced Programming - CS 239 Department of Computer Science

Getting Ready: Before going any further you should:

1. Make a directory on your N: drive for this lab.

2. Setup your development environment.

3. Download the file named TwoPartMeasure.java, Length.java, and Weights.java.
4. Review all of the classes.

Section 1 – Abstract classes

Part I: This part of the lab will help you review abstract classes.

1. Remove the abstract modifier from the declaration of the TwoPartMeasure class and the declaration of the initializeUnits method. Compile the class. What error is generated?

	

2. Replace the two abstract modifiers and re-compile the TwoPartMeasure class. Why does this class compile even though it has a method with a missing method body?

	

2b. Does the order of the modifiers matter? Change the order of the visibility modifiers and abstract and test with the compiler before answering this question.

	

3. Comment out the initializeUnits method. Compile the class. What error is generated?

	

4. Restore the commented out code.

5. Download the file named Driver0.java

Which of the two statements in main will cause a compile-time error and why?

	

Part II: This part of the lab will help you understand specializations of abstract classes.

1. Download the file named Length.java. Compile this class.

Is this class "concrete"? Why or why not?

	

2. Download the file named Driver1.java. Compile this class.
Compile and execute this driver. Does the Length class work properly?

	

3. Comment-out the implementation of the initializeUnits() in the Length class. Re -compile the Length class. What error is generated?

	

4. Replace the commented out code and recompile.

5. Download the Weight class (containing pounds and ounces) that extends the TwoPartMeasure class and compile.

Part III: This part of the lab will help you understand "type safety" issues that sometimes arise with specializations of abstract classes.

1. Download the file named Driver2.java.
Compile the driver. Why doesn't the expression myLength.equals(myWeight) generate a compile-time error?

	

2. Execute the driver. What is output?

	

3. Why does the weight equal the length in the example above? (Note: We will see how this "problem" can be fixed later in the semester.)

	

Section 2 – Interfaces

Getting Ready: Before going any further you should:

1. Download the file, FixedTermSavingsAccount.java (this is the same program that you are using for PT3.

2. Download the file named Driver3.java.

3. Familiarize yourself with the Comparable interface. (See the Java API’s).

Part I: This part of the lab will help you get started with interfaces.

1. Compile and execute Driver3. What was output?

	

2. Add the following to the end of the main() method in Driver3:

// Sort the accounts

Arrays.sort(accounts);

// Print the accounts in the sorted order

for (i=0; i < accounts.length; i++)

{

 System.out.println(accounts[i].getAccountID()+"\t"+

 accounts[i].getUserName());

}

3. Re-compile and re-execute Driver3. What error is generated?

	

4. Is this a compile-time or a run-time error?

	

5. The error above is generated because the Arrays.sort() method (and other methods it calls) expect to be passed objects that implement the Comparable interface. Since the FixedTermSavingsAccount class contains a compareTo() method it seems like this problem can be fixed by changing the declaration of the class to public class FixedTermSavingsAccount implements Comparable. Make this change and re-compile the FixedTermSavingsAccount class. What error is generated and why?

	

6. Fix this problem by changing the type of the parameter of the compareTo() method and casting it (to a FixedTermSavingsAccount within the method. What specific changes did you make?

	

7. Re-compile and re-execute Driver3. What was output?

	

Part II: This part of the lab will help you understand how to implement an interface. Return to the TwoPartMeasure project from the first Section of this lab.

1. Modify the TwoPartMeasure class so that it implements the Comparable interface. What changes did you make?

	

2. Write a driver (modeled after the Driver3 above) that tests your changes with either an array of Length objects or an array of Weight objects. What is output by your driver?

	

Submission – Submit this lab by turning in this hard-copy worksheet no later than Monday Mar 21.

