
Advanced Programming - CS239 
Department of Computer Science 

 

LAB: EXPERIMENTING WITH 
ACCESSIBILITY/VISIBILITY 

Getting Ready: Before going any further you should: 

1. Make a directory on your N: drive for this lab.  

2. Setup your development environment.  

3. Create a file named Document.java that contains the following: 
Document.java  

import java.util.*; 
 
/** 
 * A very simple Document class that can be used to explore 
 * issues related to accessibility/visibility 
 * 
 * @author  Prof. David Bernstein, James Madison University 
 * @version 1.0 
 */ 
public class Document 
{ 
    // Note that the attributes are private 
    private String       delimiters, text; 
 
 
    /** 
     * Explicit Value Constuctor 
     * 
     * @param text   The text of the document 
     */ 
    public Document(String text) 
    { 
 this.text = text; 
 delimiters = " ,.;:!?\t\n\r"; 
    } 
 
 
    /** 
     * Append additional text to the end of this Document 
     * 
     * @param addition   The text to append 
     */ 
    public void append(String addition) 
    { 
 text = text + addition; 
    } 
 
 
    /** 
     * Get the characters used to delimit words 
     * 
     * Note: This method is public but there is no reason 
     *       for non-child classes to have access 



     * 
     * @return  A String containing the delimiters 
     */ 
    public String getDelimiters() 
    { 
 return delimiters; 
    } 
 
 
    /** 
     * Get a description of this Document that 
     * includes a statistical summary 
     * 
     * @return  The description 
     */ 
    public String getDescription() 
    { 
 String       result; 
 
 result = "Contains " + getWordCount() + " word(s)."; 
 
 return result; 
    } 
 
 
    /** 
     * Get the text of this Document 
     * 
     * @return  The text 
     */ 
    public String getText() 
    { 
 return text; 
    } 
 
 
 
    /** 
     * Get the number of words in this Document 
     * 
     * @return  The number of words 
     */ 
    public int getWordCount() 
    { 
 int                count; 
 StringTokenizer    tokenizer; 
 
 tokenizer = new StringTokenizer(text, delimiters); 
  
 count = tokenizer.countTokens(); 
 
 return count; 
    } 
 
} 
 

4. Create a file named FormattedDocument.java that contains the following: 
FormattedDocument.java  

import java.util.*; 
 
/** 
 * A very simple FormattedDocument class that can be used to explore 
 * issues related to accessibility/visibility 
 * 



 * Compared to its parent, this class modifies: 
 * 
 *     1. The getText() method (provides line-wrap at word boundaries) 
 *     2. The getDescription() method (provides additional detail) 
 * 
 * Compared to its parent, this class adds: 
 * 
 *     1. A maxWidth attribute (used for line-wrap) 
 *     1. A setWidth() method 
 * 
 * @author  Prof. David Bernstein, James Madison University 
 * @version 1.0 
 */ 
public class FormattedDocument extends Document 
{ 
    private int          maxWidth; 
 
 
    /** 
     * Explicit Value Constuctor 
     * 
     * @param text   The text of the document 
     * @param width  The maximum width of a line 
     */ 
    public FormattedDocument(String text, int width) 
    { 
 super(text); 
 
 maxWidth = width; 
    } 
 
 
    /** 
     * Get a description of this Document that 
     * includes a statistical summary 
     * 
     * @return  The description 
     */ 
    public String getDescription() 
    { 
 int          count; 
 String       result, temp; 
 
 temp   = super.getText(); 
 count  = getWordCount(); 
 
 result = "This document has " + count; 
 if (count == 1) result += " word "; 
 else            result += " words "; 
 
 result += "and at least " + temp.length()/maxWidth + 
           " lines."; 
 
 return result; 
    } 
 
 
     
    /** 
     * Get the text of this Document 
     * 
     * @return  The text 
     */ 
    public String getText() 
    { 
 int                currentWidth, wordWidth; 
 String             delim, result, temp, word; 
 StringTokenizer    tokenizer; 



 
 // Construct the tokenizer 
 temp  = super.getText(); 
 delim = super.getDelimiters(); 
 tokenizer = new StringTokenizer(temp, delim); 
 
 // Initialization 
 currentWidth =  0; 
 result       = ""; 
 
 // Loop through the words in the text 
 while (tokenizer.hasMoreTokens()) 
 { 
     word = tokenizer.nextToken(); 
     wordWidth = word.length(); 
      
      
     if ((currentWidth + wordWidth + 1) > maxWidth) 
     { 
  // Time for a new line 
  result += "\n" + word; 
  currentWidth = wordWidth; 
 
     } else { 
 
  // Put this word on the current line 
  if (currentWidth == 0)  
                { 
      // First word on the line 
      result += word; 
      currentWidth = currentWidth + wordWidth; 
 
  } else { 
 
      // Not the first word on the line 
      result += " " + word; 
      currentWidth = currentWidth + wordWidth + 1; 
  } 
     } 
 } 
 result += "\n"; 
 
 return result; 
    } 
 
 
 
 
    /** 
     * Set the maximum width (in characters) 
     * of a line 
     * 
     * @param width  The maximum line width 
     */ 
    public void setWidth(int width) 
    { 
 maxWidth = width; 
    } 
} 
 

5. Create a file named Driver.java that contains the following: 
Driver.java  

/** 
 * A driver for testing the Document and FormattedDocument 



 * classes 
 */ 
public class Driver 
{ 
    /** 
     * The entry point of the application 
     * 
     * @param args     The command line arguments 
     */ 
    public static void main(String[] args) 
    { 
 Document                 doc; 
 String                   text; 
 
 
 text = "George is a little monkey, "+ 
               "and all monkeys are curious. "+ 
               "But no monkey is as curious "+ 
               "as George."; 
 
 
 doc = new FormattedDocument(text, 20); 
 
 System.out.println(); 
 System.out.println(doc.getDescription()); 
 System.out.println(); 
 System.out.println(doc.getText()); 
    } 
} 
 

6. Make sure you understand the classes you just created.  

Part I: This part of the lab is a review of material from earlier in the semester. 

1. Compile all of the classes and execute the driver. Did you get the output you 
expected?  

2. Don't change the declaration of the variable named doc but change the line containing 
doc = new Document(text); to doc = new String(text);. Re-compile the driver. 
What error was generated? Why?  

3. Don't change the declaration of the variable named doc but change the line that now 
contains doc = new String(text); to doc = new FormattedDocument(text, 
20);.  

4. Re-compile the driver. Why did it compile even though there appear to be 
incompatible types?  

5. Re-execute the driver. Did it output what you expected? If so, why? If not, why not?  

6. The getText() method in the FormattedDocument class contains the line temp = 
super.getText();. Explain this line of code.  

7. Replace the line temp = super.getText(); with the line temp = getText(). Re-
compile this class and re-execute the driver. What happened and why?  

Part II: In this part of the lab you will experiment with changing the accessibility/visibility 
of attributes and methods. 



Copyright ©2004  

1. Make the accessibility of the getDelimiters() method in the Document class 
private. Re-compile only the Document class. What happens and why?  

2. Re-compile only the FormattedDocument class. What happens and why?  

3. Now make the getDelimiters() method protected and re-compile all of the 
classes. What happens and why?  

4. What's the difference between the public version and the protected version? Which 
is better? Why?  

5. Perform the same experiments with the getWordCount() method. Which version is 
better? Why?  

6. Change the accessibility of the delimiters and text attributes in the Document class 
to protected. What changes can you now make to the FormattedDocument class? 
(Hint: Think about how the FormattedDocument class accesses these attributes.)  

7. Do you like these changes? Why or why not?  

8. Now that the delimiters attribute is protected, do you still need the 
getDelimiters() method?  

9. Should either the getDescription() or getText() mehods in the Document class be 
protected? Why or why not?  


