Name ____________________

Lab 9 Deliverable

Part I: no deliverable but should be tested to make sure it works

Part II: Do steps 1..4 then answer the question below in the box provided

What happens when you execute your driver?

	2 JMU clocks appear – one says Harrisonburg or home , one says Paris – each shows current time of day at location specified.

Do steps 5..8, then answer the question below in the box provided

What happens when you execute your driver?

	clock is updated and beeps once when set time occurs

Answer the question in step 9 in the box below

	we don’t see time on AlarmClock face
Additional Bernstein response follows: The time does not change every second the way it should because that behavior is provided by the updateTime() method in the Clock class.
Note that if you called updateTime(); instead of super.updateTime(); you would call the method in the AlarmClock class. In other words, the updateTime() method in the AlarmClock class would call the updateTime() method in the AlarmClock. This is an "infinite recursion" and, ultimately, results in a "stack overflow".

Part III: Carefully read each the code for each of the TesterX.java files. Do them one at a time. After studying each (and compiling each to verify your understanding) write the answer to the question Will this class compile? (yes/no) in the left part of each box and the answer to If so, why? If not, why not? (why? or why not?) in the right part of each box. Turn this in at the start of lab on Monday.

	Tester1

yes
	An AlarmClock is-a Clock. AlarmClock objects inherit Clock attributes because AlarmClock extends the Clock class (note that both clocks reverse colors)

	Tester2

no
	Clock object can’t call turnAlarmOn()
¼§ÏTester2.java:28: cannot find symbol
Ï§Ïsymbol : method turnAlarmOn()
Ï§Ïlocation: class Clock
Ï§Ïclock.turnAlarmOn();

Additional Bernstein response follows: It will not compile because the Clock class does not have a turnAlarmOn() method. From the compiler's perspective, clock in the setup() method is a Clock object (and, hence, does not have a turnAlarmOn() method).

	Tester 3

no
	can’t pass a Clock object when an AlarmClock is needed (a Clock is NOT an AlarmClock)

¼§ÏTester3.java:18: setup(AlarmClock) in Tester3 cannot be applied to (Clock)

	Tester 4

yes
	An AlarmClock object inherits the attributes of Clock and therefore can be assigned to a Clock object
Bernstein response follows: The createClock method returns an AlarmClock object which is then assigned to a reference variable that is supposed to point to a Clock object. Since an AlarmClock object "is a" Clock this assignment will work.

	Tester 5

no
	can’t call SetAlarm on a Clock object
 ¼§ÏTester5.java:16: cannot find symbol
ÏÏ§Ïsymbol : method setAlarm(int,int,int,java.lang.String)
ÏÏ§Ïlocation: class Clock
ÏÏ§Ïhome.setAlarm(1, 39, 45, "PM");
ÏÏ§Ï ^
Ï¼§ÏTester5.java:17: cannot find symbol
ÏÏ§Ïsymbol : method turnAlarmOn()
ÏÏ§Ïlocation: class Clock
ÏÏ§Ïhome.turnAlarmOn();
ÏÏ§Ï ^
ÏÏ§Ï2 errors
Bernstein explanation: In the main() method an attempt is made to call the setAlarm() method that belongs to the home object. However, from the compiler's perspective, home is a Clock object and does not have such a method.

You might argue that the home object is actually an AlarmClock since that is how it is created in the createClock() method. However, the compiler is "unaware" of this since it is declared to be a Clock in the main() method.

