CS239 - Advanced Programming James Madison University

Examination 2 Spring 2005
Name:

Professor:
Adams

Harris
Instructions: Answer all of the following questions. This is a "closed book" examination and you must work entirely on your own. You may not use a calculator or computer.

You must sign the pledge after you complete the exam.

	This work complies with the JMU Honor Code.

Signature:

Advice on Tracing Execution: Read the question carefully and trace the execution on paper (showing all of your work). Do not attempt to do all of the work "in your head".

Advice on Writing Code: First write comments that explain the algorithm you intend to use. Then write the actual code. (Partial credit will be awarded for correct algorithms that are commented well but implemented incorrectly.)

	Grading: We would like to get a feeling for how much of the material on this exam you think you understand. To that end, after you complete the exam, please record the number of points you expect to earn on each question in the column labeled "Your Estimate" below. (You will earn 3 bonus points if your estimate is within 5 points of the actual grade you earn.)
Question
Possible
Your Estimate
 Actual Points

Points

1

10 __________ __________

2

10 __________ __________

3

10 __________ __________

4

20 __________ __________

5

10 __________ __________

6

10
 __________ __________

7

20 __________ __________

8

15 __________ __________

9

15 __________ __________

Total:
120 __________ __________

1. (10 points) Indicate whether each of the following statements is true or false:

	a.
	When you want to force a subclass to redefine the method(s) of its parent, make the methods concrete in the super class.

	b.
	A class that defines an abstract method must be declared as abstract

	c.
	A subclass can access the private variables of its parent by using their names preceded by “super”.

	d.
	Abstract classes can’t have any concrete methods.

	e.
	Interfaces define a set of methods and constants to be implemented by another object.

	f.
	An interface can not specify any implementations for its methods.

	g.
	Classes that implement an interface must override every method in the interface.

	h.
	Interfaces can extend classes.

	i.
	A class can only implement a single (one) interface.

	j.
	An abstract class can’t have instances.

2. (10 points) Use the Calculator class (which is found on the yellow REFERENCE PAGE for Questions 2 and 3) to answer this question.

Indicate the line number in the Calculator class in which each of the following occurs:

_____ a. The variable operators is declared/defined.

_____ b. The variable tokenizer is instantiated.

_____ c. The variable operators is initialized.

_____ d. The variable right is declared/defined.

_____ e. The variable left is updated/modified
3. (10 points) Use the Calculator class (which is found on the yellow REFERENCE PAGE for Questions 2 and 3) to answer this question.

a. Under what circumstances will an Arithmetic Exception be thrown?

	

b. Which line might cause an ArithmeticException to be thrown?

	

c. Under what circumstances will a NoSuchElement be thrown?

	

	d. Which line might cause a NoSuchElementException to be thrown?

	

	
	

	e. Under what circumstances might a NumberFormatException be thrown?

	

	f. Which line might cause a NumberFormatException to be thrown?

	

	g. Is there any other Exception that might be thrown by code in the Calculator class? IF there is, what is it?

	

	
	

	
	

	
	

	
	

	
	

4. (20 points) Given the following UML diagram that describes a set of classes related to Shapes, write the stubs for the classes, Shape, ThreeDimensionalShape, Sphere, and Cube.

Your stub must contain all required methods and must not include any extraneous methods. Do not write any Javadocs for this question. Do use the back of the previous (i.e. facing page) for your answer.
	<<interface>>

java.lang.Comparable

	

	+ compareTo(otherObject:Object): int

	<<abstract>>

Shape

	- description: String

	+ Shape(what: String)

+ abstract compareTo(otherShape:Object):int

+ toString() : String

	<<abstract>>

ThreeDimensionalShape

	

	+ ThreeDimensionalShape(what: String)

compareTo(otherShape:Object):int

+ abstract getVolume(): double

+ abstract getSurfaceArea(): double

	Cube
	
	Sphere

	- side: double
	
	- length: double

	+ Cube(side: double)

+ getVolume(): double

+ getSurfaceArea(): double

- getSquareArea()
	
	+ Sphere(side: double)

+ compareTo(otherShape: Object): int

+ getVolume(): double

+ getSurfaceArea(): double

5. (10 points) Consider the following interface and class(es) on this page and facing page
	public interface Discountable

{

public double getDiscount();

}

	public class Stove implements Discountable

{

 private double price;

 private String brand, model;

public Stove(double price)

{

this.price = price;

}

public double getDiscount()

{

double amount;

amount = price * 0.10;

return amount;

}

}

	public class HousePainting implements Discountable

{

private boolean priming, painting;

public HousePainting(boolean priming, boolean painting)

{

this.priming = priming;

this.painting = painting;

}

public double getDiscount()

{

double amount;

amount = 0.0;

if (priming)

{

amount += 10.0;

}

if (painting)

{

amount += 10.0;

}

return amount;

}

}

	public class CashRegister

{

public void printTotalSavings(Discountable[] items)

{

double total;

int i;

total = 0.0;

for (i=0; i < items.length; i++)

{

total += items[i].getDiscount();

}

System.out.println("Total savings: " + total);

}

}

	public class CashRegisterDriver

{

public static void main(String[] args)

{

CashRegister register;

Discountable[] items;

items = new Discountable[3];

items[0] = new Stove(550.00);

items[1] = new HousePainting(true, false);

items[2] = new Stove(800.00);

register = new CashRegister();

register.printTotalSavings(items);

}

}

What would be output if the driver were executed? Show all of your work in the table below using one (1) line for each variable and a new column each time a variable’s value changes OR one (1) column for each variable and a new line each time a variable’s value changes.. You may not need all the lines or columns
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

OUTPUT
	

6. (10 points) Complete the following USCurrency class (that extends the TwoPartCurrency class on the peach REFERENCE pages). Your implementation must be "concrete" and must have three constructors (as in the TwoPartCurrency class). Do not include comments. (Note: The two parts are dollars and cents.
	/**

* A currency class that represents US currency. Negative currency amounts represent
* reduction or debt and are permissible.

*/

public class USCurrency extends TwoPartCurrency
{

}

7. (20 points) The Comparable interface in Java contains a single method as follows:

	/**

* Compares this object with the specified object for order.

* Returns a negative integer, zero, or a positive integer

* as this object is less than, equal to, or greater than

* the specified object.

*

* @param other The Object to be compared

* @return -1/0/1

*/

public int compareTo(Object other);

a. What must be added to the TwoPartCurrency class which is on the peach REFERENCE pages

 in order to make it implement the Comparable interface.

	

b. Write the method or methods identified in part (a).

	

8. (15 points) Java does not contain an exponentiation operator. Write a recursive function that will raise a number x to the y power. Assume that x and y are integers and y is > 0.
You must include comments that indicate where the base/easy case is being handled and where the hard cases are being handled (i.e., the refinement process). You must write the function using only Java operators. You may not use the Math.pow method.

	/*

* Using a recursive algorithm, calculates the result of x raised to an integer power.

*

* @param x The base number

* @param y The exponent

* @return x raised to the y power

*/

public int exponent(int x, int y)

{

}

9. (15 points) Trace the action of class RecursionTrace. Use the boxes on the right to hold your stack of activation records. Show the output below the trace.
	public class RecursionTrace
{

 public static void main(String[] args)
 {
 int[] myData = {1,2,3,4};

 fiddle(myData, 0);

 for (int i=0; i < myData.length; i++)
 {
 System.out.println(myData[i]);
 }
 }

 public static void fiddle(int[] numbers, int value)
 {
 int temp;

 if (value <= numbers.length-2)
 {
 temp = numbers[value];
 numbers[value] = numbers[value+1];
 numbers[value+1] = temp;

 if (value < numbers.length-1)
 {
 fiddle(numbers, value+2);
 }
 }
 }

}
	Stack

	
	

	
	

	
	

	
	

Show the output of the program.

	

Key:

+ public

- private

protected

implements

