o, 21 Hashing 3T

Optimal decisions concerning these factors have a substantial effect on
o efficiency of the file organization. We will review them in the above

BUCKET A certain number of address spaces are made
SIZE available, called home buckets. A bucket can hold
' one or more records, and the systems analyst can
select the bucket capacity. As shown in Fig. 19.5, the hashing routine
scatters records into the home buckets somewhat like a roulette wheel

2 l HASHING

Let us suppose that a roulette wheel has 100 balls which it will
distribute to its compartments. Each ball represents a record, and each
compartment represents a bucket. The wheel’s compartments can hold 100
palls in total; however, we can vary the size of the compartments. If a ball is
sent to a compartment which is full, it must be removed from the roulette
‘wheel and placed in an overflow area.

If we have 100 compartments which can hold only one ball each, the
wheel will often send a ball to a compartment which is already full. There
will be a high proportion of overflows. If we have 10 compartments which

Hashing (Fig. 19.5) has been used for addressing random-access storages
since they first came into existence in the mid-1950s, but nobody had the
temerity to use the word hashing until 1968. The word randomizing was
used until it was pointed out that not only did the key conversion process
fail to produce a random number, but, contrary to early belief, it was
undesirable that it should.

Many systems analysts have avoided the use of hashing in the suspicion:
that it is complicated. In fact it is simple to use and has two important
advantages over indexing. First, it finds most records with only one seek,
and, second, insertions and deletions can be handled without added
complexity. Indexing, however, can be used with a file which is sequential
by prime key, and this is an overriding advantage for some batch-processing
applications.

There are many variations in the techniques available for hashing. They
have been compared in many different studies [1,2,3,], and from these
studies we will draw certain guidelines about which are good techniques and
which are best avoided.

Percent of overftow balls

FACTORS AFFECTING The factors which the systems analyst can vary
EFFICIENCY when using hash addressing are as follows:

1. The bucket size.
2. The packing density, i.e., the number of buckets for a file of a given size.

1 2 45 10 2025 50 100

Capacity of compartments on roulette wheel
3. The hashing key-to-address transform. Figure 21.1

4. The method of handling overflows.

376

378 Physical Organization Part ||

can hold 10 balls each, there will be far fewer overflows. It is an exercise ip
basic statistics to calculate the expected number overflows, and Fig. 21 1
shows the result.

If a systems analyst chooses a small bucket size, he will have a relatively
high proportion of overflows, which will necessitate additional bucket reads
and possibly additional seeks. A larger bucket capacity will incur fewer
overflows, but the larger bucket will have to be read into main memory and
searched for the required record.

Figures 21.2 and 21.3 illustrate a simple hashing process with a bucket
capacity of 2.

If a direct-access device is used which has a long access time, it isg
desirable to minimize the numbers of overflows. A bucket capacity of 10 or
more should be used to achieve this end.

On the other hand, if the file is stored in a solid-state, or core, storage,
the overflow accesses can be carried out as rapidly as the read operations
used when searching a bucket. In this case it is desirable to minimize the
bucket-searching operation at the expense of more overflows. In such a case
a bucket size of 1 is economical. Later we will discuss systems using paging
in which a page containing many items is read into solid-state storage and
hashing is used for finding an item on the page as quickly as possible. A
bucket size of 1 is used.

In practice, bucket capacity is often tailored to the hardware
characteristics. For example, one track of a disk unit, or half a track, may be
made one bucket.

PACKING The proportion of overflows is also affected by the
DENSITY density with which records are packed into the

home buckets. If the roulette wheel can hold 100
balls in total and 100 balls are spun into its compartments, there will be a
high probability that some balls will overflow—even if the compartments are
quite large. If only 80 balls are spun, the probability of overflow will be
much lower.

Packing density = Number of records stored in home buckets
acking density = yr imum number of records that could be stored in them

When we use this ratio to refer to the home buckets only, ignoring
overflow records, we will call it the prime packing density. The above
roulette wheel spinning 80 balls is used with a prime packing density of 80%.

Chap. 21 Hashing 379

Key Remainder
converted after
Key to digits dividing by 29

1) BETTY 25338 21

2 JUNE 1455 5

3 CHLOE 38365 27

4 KRISTEN 2992355 19

§ YVONNE 856555 11 \

6 MOLLY 46338 25

7 DIANA 49151 25

g8 ELECTRA 5353391 20

9 OLGA 6371 20
10 GRACIE 791395 14
11 LARA 3191 1 ‘
12 NANCY 51538 5
13 PRUDENCE 79445535 6]

4 SAMANTHA 21415381 12
15 ANNE 1565 18 | {DELILAH
16 FRED 6954 i) !
17 MABLE-SARAH 41235021918 15 Z0E
18 MARY 4198 22
19 FLOSSY 636228 2 \
20 JANET 115663 1"
21 PAM 714 18 (JANET
22 XANTHIPPE 715389775 27 | GEORGIE
23 PRISCILLA 799239331 27 INEFERTITI
24 CAROL 31963 5 !
26 ROSEMARY 96254198 8
26 RUTH 9438 13 5 NATALIS
27 ELIZABETH 539912538 21 !
28 NEFERTITI 556593939 13
29 ELLEN 53355 24 PAM
30 Z0E 965 8
31 PATIENCE 71395535 0
32 PENNY . 75558 13 g"_-g‘: o
33 VANESSA 5155221 7
34 WILLY 69338 28
35 VALERY 513598 8
36 LOUISE 364925 18
37 SCARLETT 23193533 0 DIANA
38 CLEOPATRA 335671391 16
39 GEORGIE 7569795 12
40 CANDICE 3154935 25 | XANTHIPPE
41 NATALIA 5131391 15 g
42 POLLY 76338 10 | I
43 HOPE 8675 4 : ARE
44 DELILAH 4539318 6
45 GERT 7593 24 CANDICE
46 DOBBY 46228 2 :

5911‘.-15"05 The key is converted into digits by retaining only the four bits

of f’!e which represent numbers in BCD code (see Fig.32.2). This

loading method should not be used in practice because it throws away

information in the key. It is used here to provide an easily-
followed illustration.

Figure 21.2 A simple illustration of hashing to a storage with 29 prime
buckets, each of capacity 2.

The systems analyst can exercise a trade-off between saving storage and
saving time by adjusting the prime packing density. If the key-to-address
conversion algorithm scatters the records into buckets at random like the
roulette wheel, we could calculate statistically the percentage of overflows

380 Physical Organization Part 1]
- — Box 21.1 Prime packaging density, bucket capacity
co:verted after and numbers of overflows
Key to digits dividing by 29
1 BETTY 25338 21 '
2 JUNE 1455 5
3 CHLOE 38365 27 |
; St e L Let N = the total number of balls, M = the total number of
. g‘&'ﬁf :g?gf gg o B compartments in the roulette wheel, and C = the capacity of a
0 [PATIENCE . . ;
g gl]__I(EECTRA 2353391 go N ARA compartment. Then the prime packing density = N/CM.
A 7 0 . ’ . T e s ’
10 GRACIE 791395 14 DOBBY Using the binomial distribution, the probability that a given
LS el e 2 compartment will have x balls sent to it in N spins of the roulette
13 PRUDENCE 79445535 6 wheel is
14 SAMANTHA 21415381 12 :
15 ANNE 1555 18 i S HDENCE RELILAR N! 1\ X 1\ n-x
16 FRED 6954 23 | VANESSA Prob (x) = ———(— (1 i
17 MABLE-SARAH 41235021918 15 ROSEMARY ZOE x!I(N-x)! \M M
18 MARY 4198 22
19 FLOSSY 636228 25\
S e e i JANET The probability that there will be ¥ overflows from a given
22 XANTHIPPE 715389775 27 GEORGIE compartment is P(C + Y).
23 PRISCILLA 799239331 27 NEFERTITI ’ y
24 CAROL 31963 5 GRACIE The mean number of overflows from a given compartment is
= ggﬁ.ﬁ”“" il - MABLE-SARAH |NATALIA
27 ELIZABETH 539912538 21 CLEOPATRA | LESLIE s
28 NEFERTITI 556593939 13
29 ELLEN 53355 24 PAM E .
30 ZOE 965 8 Prob (C+ 1) Y
31 PATIENCE 71395635 0 5
32 PENNY 75558 13 LLoA ¥Y=1
33 VANESSA 5155221 7 ELIZABETH
34 WILLY 69338 28 1)
35 VALERY 513598 8 The percentage of overflows for the entire roulette wheel is
36 LOUISE 364925 18
37 SCARLETT 23193533 0 s therefore
38 CLEOPATRA 335671391 16 LANA
39 GEORGIE 7569795 MARTA
40 CANDICE 3154935 XANTHIPPE o0
41 NATALIA 5131391 JENNIFER M
42 FOLLY 76338 CAROL 100 X — - Z Prob(C+Y)-Y
43 HOPE 8675 N
44 DELILAH 4539318 VALERY Y=1
45 GERT 7593 CANDICE =
46 DOBBY 46228
47 LESLIE 352395 ; . k
48 JOAN 1615 From this we can explore the relationship between bucket
8 MARTA | Bt capacity, C, prime packing density, N/CM, and percentage of over-
flows in a hashed file. The results are plotted in Fig. 21.4.
Figure 21,3 Four new records added to the file in Fig. 21.2. :
for different prime packing densities. Box 21.1 shows the calculation, and e . _ _
the curves in Fig. 21.4 give the results of this calculation I If the file is on an electromechanical storage with a long access time,
The systems analyst ought to be able to find key-to-address conversion the primary concern Ay be to cut down the number of accesses. The
algorithms that do better than the roulette wheel, as we will see. Many are §ystems analyst may decide to hold the overflow percentage to 1%. As seen
worse. The equations in Box 21.1 and the curves in Fig. 21.4 give a useful in Fig. 21.4, he may do so by having a prime packing density of 70% and a
guideline to the trade-off among prime packing density, bucket size, and the bucket capacity of 20 T IoLe, On the other hand, access tlme-may be of
| ool 3t Svertiditg less concern than the efficient use of storage space. He may decide to use a
i 9 381
f i
|
I
| i

382 Physical Organization Part 11
T L S S

(A AR RE RS Ty FR S SR SR e s F 8 F R PR

et B e o & LN o - £ = kol il tﬁﬁ:

e e Aded a0l L

o £k

i .
e i .
i g
i

o
.
-

i

S
i

e

e
s el Pl

L EE R

S

e

=

o
4
s

e

e

-

L

L
L
S

&
.
-
i

:
ol

8

i W
S
.
o
e

b

e
.
S

.

i

L

=

5

G

-

e
s

e

-
o

= E
L =

“

e s
o

Figure 21.4 The systems analyst can exercise a trade-off between
prime packing density, bucket capacity, and percentage of overflows.
These curves are drawn from a key-to-address transform which
perfectly randomizes the key set, like a roulette wheel. Compare with
Fig. 21.7.

prime packing density of 95% and again use a large bucket size to reduce
overflows. Conversely, he may want to avoid the computer time needed to
search a large bucket. If the file is in solid-state memory so that overflow
access is not time-consuming, he may use a bucket capacity of 1 and use a
high packing density because this storage is expensive.

KEY-TO-ADDRESS
CONVERSION
ALGORITHMS

The key-to-address conversion algorithm generally
has three steps:

1. If the key is not numeric, it is converted into a numeric form ready for manipulation.
The conversion should be done without losing information in the key. For example,
an alphabetical character should not be converted into one digit (as in Fig. 21.2) but
into two. Alphanumeric data may be manipulated in the form of binary strings.

2. The keys are operated on by an algorithm which converts them into a spread of
numbers of the order of magnitude of the address numbers required. The key set
should be distributed as evenly as possible across this range of addresses.

Chap. 21 Hashing 383

3. The resulting numbers are multiplied by a constant which compresses them to the
precise range of addresses. The second step may, for example, give four digits when
7000 buckets are to be used. The four-digit number is multiplied by 0.7 to put it in
the range 0000 to 6999. This relative bucket number is then converted into a machine
address of the bucket.

For the second step many transforms have been proposed and tested. It
is desirable that the transform distribute the keys as evenly as possible
between the available buckets. Realistic transforms distribute the keys very
imperfectly, and so overflows result. The following are some of the more
useful candidates:

1. Mid-square method

The key is multiplied by itself, and the central digits of the square are
taken and adjusted to fit the range of addresses.

Thus, if the records have 6-digit keys and 7000 buckets are used, the
key may be squared to form a 12-digit field of which digits 5 to 8 are used.
Thus, if the key is 172148, the square is 029634933904. The central four
digits are multiplied by 0.7: 3493 X 0.7 = 2445. 2445 is used as the
bucket address.

This is close to roulette-wheel randomization, and the results are
usually found to be close to the theoretical results of Fig. 21.4,

2. Dividing

It is possible to find a method which gives better results than a random
number generator. A simple division method is such. The key is divided by a
number approximately equal to the number of available addresses, and the
remainder is taken as the relative bucket address, as in Fig. 21.2. A prime
number or number with no small factors is used.

Thus, if the key is 172148 again and there are 7000 buckets, 172148
might be divided by 6997. The remainder is 4220, and this is taken as the
relative bucket address.

One reason division tends to give fewer overflows than a randomizing
algorithm is that many key sets have runs of consecutive numbers. The
remainder after dividing by, say, 6997 also tends to contain runs of
consecutive numbers, thereby distributing the keys to different buckets.

3. Shifting

The outer digits of the key at both ends are shifted inward to overlap
by an amount equal to the address length, as shown in Fig. 21.5. The digits

Address
length
Key | [
Example:
Key

Figure 21.5 Key-to-address conver-

i i sion by shifting.

are then added, and the result is adjusted to fit the range of bucket
addresses.

4. Folding

Digits in the key are folded inward like folding paper, as shown in
Fig. 21.6. The digits are then added and adjusted as before. Folding tends to

be more appropriate for large keys.

Address
length

Kev:I_L| l | I I

Example:

Key: |

Figure 21.6 Key-to-address conversion

Address: | by folding.

Chap. 21 Hashing 385

5. Digit Analysis

Some attempts at achieving an even spread of bucket addresses have
analyzed the distribution of values of each digit or character in the key.
Those positions having the most skewed distributions are deleted from the
key in the hope that any transform applied to the other digits will have a
better chance of giving a uniform spread.

6. Radix Conversion

The radix of a number may be converted, for example, to radix 11. The
excess high-order digits may then be truncated.
The key 172148 is converted to

IX 115 +7X 11*+2X 113+ 1X 112 + 4% 11! + 8 = 266373

and the digits 6373 are multiplied by 0.7 to give the relative bucket address
4461.

Radix 11 conversion can be performed more quickly in a computer by
a series of shifts and additions.

7. Lin’s Method [9]

In this method a key is expressed in radix p, and the result is taken
modulo g™, where p and ¢ are prime numbers (or numbers without small
prime factors) and m is a positive integer.

The key 172148 would first be written as a binary string: 0001 0111
0010 0001 0100 1000. Grouping the string into groups of three bits, we
obtain 000 101 110 010 000 101 001 000 = 05620510. This is expressed
as a decimal number and divided by a constant q™ . The remainder is used to
obtain the relative bucket address.

8. Polynomial Division

Each digit of the key is regarded as a polynomial coefficient; thus, the
key 172148 is regarded as x° + 7x* + 2x* + x2 + 4x + 8. The
polynomial so obtained is divided by another unchanging polynomial. The
coefficient in the remainder forms the basis of the relative bucket address.

Physical Organization Part 11

386
CHOICE OF The best way to choose a transform is to take the
TRANSFORM key set for the file in question and simulate the

behavior of many possible transforms. For each
transform, all the keys in the file will be converted and the numbers of
records in each bucket counted. The percentage of overflows for given
bucket sizes will be evaluated.

Several researchers have conducted experiments on typical key sets
searching for the ideal transform [3]. Their overall conclusion is that the
simple method of division seems to the best general transform. Buchholz [1]
recommends dividing by a prime slightly smaller than the number of
buckets. Lum et al. [3] say that the divisor does not have to be a prime; a
nonprime number with no prime factors less than 20 will work as well.

Figure 21.7 shows some typical results. The red curve shows the
theoretical behavior of a perfectly randomizing transform like a roulette
wheel. The points plotted show the average overflow percentages given
by three common transforms on eight widely differing but typical key
sets. The mid-square method is close to a theoretical randomizing transform.
The division method performs consistently better than the randomizing
transform. The folding method is erratic in its performance and so is the
shifting method, probably because of the uneven distribution of characters
in the key sets. Shifting and folding almost always perform less well than
division. The more complex methods such as radix transformation, Lin’s
method, and polynomial division also perform less well, often because their
behavior is close to that of an imperfect random number generator.

The ideal transform is not one which distributes the key set randomly

but one which distributes it uniformly across the address space.

The behavior of the good transforms on actual files
is usually somewhat better than that of a perfectly
randomizing transform but is fairly close to it. A
systems analyst who is designing file layouts would therefore be employing a
prudently conservative assumption if he used the roulette wheel calculation
of Box 21.1 or the curves in Fig. 21.4 for making estimates of file packing
density and percentage of overflows. He should use these curves along with
knowledge of the hardware characteristics to select appropriate bucket sizes.

DESIGN
RECOMMENDATION

@
=
|

=3
=
i
&
=
e
]
]
g
g2
=
4

: Folding, as in Fig. 23.6 — som

g algorithms with a

Figure 21.7 A comparison of three popular hashin
perfectly random transform. (Plotted from data a

from eight different files, in Reference 3.)

veraging the results

387

388 Physical Organization Part Il

There are two main alternative places to store
overflows. They may be stored in a separate
overflow area or in the prime area. The calculation
of Fig. 21.4 assumes that they are stored separately from the prime area.

If separate space is set aside for overflows the question arises: Should
there be an overflow area for each bucket that overflows or should the
overflows from many buckets be pooled?

There are two primary techniques in use. One is called overflow
chaining, and the other we will call distributed overflow space because it is
similar to the distributed free space discussed in the previous chapter.

WHAT SHOULD WE DO
WITH OVERFLOWS?

Overflow chaining is straightforward when the
overflow bucket capacity is 1. If a record has the
misfortune to be assigned to a full home bucket, a
free bucket in the overflow area is selected, and the record is stored in that
overflow bucket. Its address is recorded in the home bucket. If another
record is assigned to the same full home bucket, it is stored in another
overflow bucket, and its address is stored in the first overflow bucket. In this
way a chain of overflows from the home bucket is built, as in Fig. 21.8. The
home bucket may have a capacity of one or many records.

If the home bucket size and load factor are selected appropriately, the
mean chain length can be kept low. An overflow chain as long as that in
Fig. 21.8 should be a rarity. Nevertheless, the risk of multiple seeks to find
one record can be reduced if the overflow buckets have a capacity greater
than 1.

In Fig. 21.9 the home and overflow bucket each have the same
capacity, say, 10 records. The first bucket to overflow is assigned a bucket in
the overflow area. It is unlikely to fill that bucket, so the next buckets to
overflow are also assigned the same overflow bucket. The overflow bucket
will be unlikely to overflow itself, but such an event will happen
occasionally. When it does happen, the overflow bucket will be assigned
another overflow bucket just as are the home buckets.

If a record is deleted from the single-record chain in Fig. 21.8, the chain
is reconnected. If a record is deleted from the bucket chain of Fig. 21.9, the
chain cannot be reconnected. Instead the empty record location is left, and
another overflow may fill it at a later time. If the overflow buckets have
many deletions, it may be desirable to reorganize the overflow area
periodically.

OVERFLOW
CHAINING

Chap. 21 Hashing 389

PRIME
AREA
Chain

E., Ey. Eg, Eq, Es address

AREA

The hashing routine
allocates records E,,
E;, E; and Eg toa
bucket which is

OVERFLOW

Chain
address

already full. 0,

Figure 21.8 Overflow chain with overflow bucket capacities of 1
record.

DISTRIBUTED
OVERFLOW SPACE

In Fig. 21.10 there is no chain. Instead overflow
buckets are distributed at regular intervals among
the home buckets. If a home bucket overflows, the

HOME
BUCKETS

Chain
address

"
o

9
Key K, 0,
Key K,
KEV K:: 7
Key K, 0, ™
Hashing
routine
08 ~
4
01—\

.

The numbers represent the sequence
/ in which overflows take place.

OVERFLOW
BUCKETS
Chain
address

12

-0, 0,

10
10

N
~
;: 0
\\.. O; Og

op LI

Figure 21.9 Qverflow chaining with overflow bucket capacities of

many records.

390

Key K,

= ek

Key Ko § H

Key Kj g H
Key Ky i
—

Hashing routine,
which converts

a key to a bucket
number

Algorithm which
converts a bucket
number to a bucket
address

~

10

D O B W N

Overflow bucket

Home buckets

!

Overflow bucket

Home buckets —|

Home buckets —|

28}
29

Overflow bucket

30

U o

Figure 21.10 Distributed overflow space.

Overflow bucket)

R —

First overflow access

Second overflow
access

392 Physical Organization Part 1|
system attempts to store the record in the next overflow bucket. The
method has the advantage that the overflow bucket is physically close to the
home bucket. No access arm movement should be needed to go from home
bucket to overflow bucket, and no chains have to be maintained.

If an overflow bucket itself overflows, the next consecutive overflow
bucket is used in Fig. 21.10, requiring a second overflow access as shown.

The hashing routines described address a sequential spread of bucket
numbers. An algorithm must therefore be applied to this spread to give the
addresses after the overflow buckets have been inserted. Thus, in a
byte-addressed device with an overflow bucket in every tenth position as in

Fig. 21.10:

N
Bucket address = B, + B(N +[§ I)

where B, = starting byte

B = number of bytes per bucket

N = sequential bucket number produced by hashing algorithm
PRIME AREA If overflows are stored in the prime area rather

than in separate overflow buckets, the easiest way
to handle them is the consecutive spill method
(proposed by Peterson [4] and sometimes called open addressing). With this
technique the hashing routine allocates a record to a home bucket, and if the
bucket is full, it is stored in the next consecutive bucket. If that bucket is
full, it is stored in the next bucket, and so forth.

The advantage of the consecutive spill method is that a lengthy seek is
not usually needed for overflows. The next-door neighbor’s bucket is often
not more than one disk rotation away. However, when a neighborhood
becomes crowded, many buckets may have to be examined in a search for
free space. This is especially so if the buckets are of small capacity. A bucket
with only one or two spaces left will find its free space being raided by its
neighbors. (The method is sometimes called the bad neighbor policy!)

In general the consecutive spill method is efficient if the bucket
capacity is large and inefficient if it is small. It should not be employed when
the buckets have a capacity of 10 or less. The effect of bucket size can be
seen in Fig. 21.11.

Many files laid out by hashing have clusters of full buckets. When this is
the case the consecutive spill method tends to have patches of poor
performance in which strings of full buckets must be searched. A variation of
the consecutive spill method is the skip spill method in which, when a

SPILL METHODS

Average
number
of accesses 25|
per record
X
20}
Bucket size = 1
151 Bucket size = 2
X
10+ &
The black
curves are sl X Bucket size = 5
for a system / Bucket size = 10
storing over- % x
flows in the x/x
prime area a———— o
B e S o =
! 1 1 ;
0 0.50 0.60 0.70 0.80 0.90 0.95
oL Bucket size = 1
1.4} Bucket size = 2
1.3 Bucket size=5
The colored 1]
Bucket size = 10
curves are 1.2 Bucket size = 20
for a system : R
g Bucket size = 50
separate over- | {1
flow area
Bucket size = 20
1 x m— x .
| I | I : Bucket size = 50

L

0.70
Load factor

Figure 21.11 Curves comparing overflows in the prime area (consecu-
tive spill method) with overflows in a separate area (in red). It is very
inefficient to have overflows in the prime area with a small bucket size
(say 10 or less). It can be efficient to have overflows in the prime area
with a large bucket size (say 20 or greater). (Plotted from epirical data
in reference [3].)

0.50 0.60 0.80 0.90 0.95

393

394 Physical Organization Part |
i i for by skipping buckets, as
g e bucket is filled, space is searched ' 1
(riecf'o;gds 11)1; 12 selection rule [5,6]. For a layout which tends to cluster this
o be an improvement. In general its performance can ‘t?e expected to b.e
II'ms{lar to the consecutive spill method. Either method is likely 'to bs: erratic
?lmits behavior when the mean number of spills is allowed to rise either by
in :
using a small bucket size or a high load factor.

A way to store overflows in the prime area without
running the risk of having to search many })uckets
is to use a directory of free space. The directory

i may not say how much
indi hich buckets have free space. It {nay or . . .
lfr;:em:;zeasce‘ihey have. When a new record is inserted the hashing algorithm is

FREE-SPACE
DIRECTORY

used to select a bucket for that record. If the bucket is full, the directory is |

examined to find a nearby bucket “fith free space. The record is stored in
that bucket, and a pointer to it is left in the home bucket. it
Whenever a record is inserted or deleted the space irec ’j;'ons s
updated. However, the directory is neede.d. or.:ly. when mser t}ten i
deletions occur, so with a file of low VOI;t'll}llt);i 81:512 ;;tt;:;a fuc;] bu(.:kets
shortest form of space directory is one whic gty 2;
erflows occur no more than two accegses are neede
X:;?d ,Oavnd the second access may be short‘, toa prime bu;:.k::t Ir;easl:tbgé o
The snag with the directory method is that pointer lis s tu el
in the home bucket saying where the f)vext'}f'llows a;e;)f‘noizn:; LT) rz;nrecords
i ing the spac ;
% Pog:mmt;iiilgez;ﬂ%? tf:ﬁ?:?:::? wigth a lgrge bucket size (say capacity
= 20) if the load factor is n((lji‘t to;lhﬁh. ’I(‘iherelczzlrlgce:3 Sbilt;ietSiszlze ::tgl;ec;;;s:
of overflows (Fig.21.4) an .
tll;fecltlgrnffls; the space directory shows only the': fu!l buckets,a{t;c ::;Sl;; sgna;il
when the loading is not too high. When the loa.dmg 1pcreasesf, t ;
the overhead in pointer lists and dire?tory entries bl.llldS up flas ;
Box 21.2 summarizes the techniques for handling overflows.

A file addressed by hashing can have its perfor-
mance optimized in a simple way.
A small proportion of the records will be stored as overﬂl(ilwts). Becztrl(si:
i than others, they should be rec
these records will take longer to access . _ et
j this when the file is i
i re accessed infrequently. To achieve : o
;:’)zzicgld Elthe frequently referenced items should be l.oaded flrStl;, an(i r:ier
infreqL;ently referenced ones last. If possible, the loading should be in

OPTIMIZATION

w

Chap. 21 Hashing

Box 21.2 Methods for Handling Hash Addressing Overflows

Overflow records may be stored.:

A— 1. In prime area

Consecutive spill ! Very inefficient with

low bucket capacities.
Good with bucket
capacities > 20

(Fig. 21.11).

method
\— Skip spill method (avoids
some congestion caused
by clustering)
— Directory of empty space
(poor when the load factor is high)

L 2. In a separate overflow area
Using chaining

Single-record chains (Fig. 21.8)
(Chains occasionally become lengthy)
Chains of buckets (Fig. 21.9)

Without chaining
Overflow buckets with consecutive spill

Overflow buckets with skip spill
Directory of empty overflow buckets

— 3. Distributed overflow space (Fig. 21.10)

of popularity. The most frequently referenced items will go to the home
buckets. By the time the overflow positions are being loaded it will be with
the less popular items. When the file is used overflows will be less frequent.

Statistics on frequency of reference may be kept while the file is in use,
and these statistics may be employed later when the file is reloaded. As with

most physical data-base organizations, periodic reorganization can improve
performance.

395

396 Physical Organization Part ||

10.

REFERENCES
. W. Buchholz, “File Organization and Addressing,” IBM Systems J. 2, June 1963,
86—111.
. R. Morris, “Scatter Storage Techniques,” Comm. ACM 11, No. 1, Jan. 1968, 38—44,

. V. Y. Lum, P. S. T. Yuen, and M. Dodd, “Key-to-Address Transform Techniques: A
Fundamental Performance Study on Large Existing Formatted Files.” Comm. ACM
14, No. 4, April 1971, 228—259.

. W. W. Peterson, “Addressing for Random-Access Storage,” IBM J. Res. Develop. 1,
No. 2, April 1957, 130—146.

. C. E. Radke, “The Use of Quadratic Residue Research,” Comm. ACM, Feb. 1970.

. J. R. Bell, “The Quadratic Quotient Method: A Hash Code Eliminating Secondary
Clustering,” Comm. ACM, Feb. 1970.

. J. A. van der Pool, “Optimal Storage Allocation for Initial Loading of a File.” IBM J.
Res. Develop. 16, No. 6, 1972, 579.

. J. A. van der Pool, “Optimal Storage Allocation for a File in Steady State,” IBM J.
Res. Develop. 17,No. 1,1973,27.

. A. D. Lin, “Key Addressing of Random Access Memories by Radix Transformation,”
in Proceedings of the Spring Joint Computer Conference, 1963.

C. A. Olson, “Random Access File Organization for Indirectly Addressed Records,”
in Proceedings of the ACM National Conference, 1969.

Chapter 22
Chapter 23

. Chapter 24

- Chapter 25

Pointers

Chains and Ring Structures
Physical Representation of Tree
Structures

Physical Representation of Plex
Structures

