Homework  #4 – September 7,2005      -     Name ___________________

 

#1. Use a table to express the values of each of the following Boolean function

 

     F(x,y,z) = x'y + y'z

 

 

y'

x'

x

y

z

x'y

y'z

F(x,y,z) =x'y + y'z

1

1

0

0

0

0

0

0

1

1

0

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

1

0

1

0

0

0

0

9

1

0

1

0

1

0

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

0

0

0

 

 

#2.   How many different Boolean functions are there of degree 6?

 

     2 to the 2 to the 6th   OR

     264

 

 

#3.   Find the duals of these Boolean  expressions

 

            a.   x + y           xy

 

            b.    x'y'           x’ + y’

 

4.  Find a Boolean product of the Boolean variables x, y, and z, or their complements that has the value 1 if and only if:

              x = z = 0, y = 1

 

                x’yz’ 

 

     

#5.  Study example 3 on page 710 carefully and then do the following problem.  (Note:  I do not require you to use the Boolean identities to produce the answer; you may use the table).

 

       Find the sum-of-products expansion of the Boolean function below

        F(x,y) = x' + y

 

         x’y + x’y’ + xy

 

 

#6.   page 718 problem 2.

 

            (x’y’)’

 

 

#7.    page 16,  problem 8a   (section 1.1)

 

            If you have the flue, then you miss the final exam

 

#8.    page 26,  problem 8c (section 1.2)

 

p

q

p -> q

p^(p->q)

[p^(p->q)]->q

0

0

1

0

1

0

1

1

0

1

1

0

0

0

1

1

1

1

1

1

 

 

#9.    page 41,  problem 14a  (section 1.3)

 

            TRUE      when  x = -1

 

#10   p 52,  problem 8 a (section 1.4) 

 

     $x$y (Q(x,y))