Homework #7 KEY
Section 2.6 page 180 in textbook
0101102
+7 = 0001112 -7 = 1110002
0101102
remember: positive numbers are the same in all three
representations
-710 = 1110012
The next 6 questions relate to the Boolean function described below by a Karnaugh map:
|
cd |
|
|
|
|
ab |
\ |
00 |
01 |
11 |
10 |
|
00 |
1 |
|
|
1 |
|
01 |
1 |
x |
|
1 |
|
11 |
x |
|
1 |
|
|
10 |
1 |
|
1 |
|
|
cd |
|
|
|
|
ab |
\ |
00 |
01 |
11 |
10 |
|
00 |
0 |
1 |
1 |
0 |
|
01 |
0 |
x |
1 |
0 |
|
11 |
x |
1 |
0 |
1 |
|
10 |
0 |
1 |
0 |
1 |
F’(a,b,c,d) = a’d + c’d + acd’
F’’(a,b,c,d) = F(a,b,c,d) = (a’d +
c’d + acd’)’ =
(a’’+d’)(c’’+d’)(a’+c’+d’’) =
(a+d’)(c+d’)(a’+c’+d)
|
cd |
|
|
|
|
ab |
\ |
00 |
01 |
11 |
10 |
|
00 |
1 |
|
|
1 |
|
01 |
1 |
x |
|
1 |
|
11 |
x |
|
1 |
|
|
10 |
1 |
|
1 |
|
F(a,b,c,d)
= c’d’ + a’d’ + acd
a |
b |
c |
d |
a' |
c' |
d' |
c'd' |
a'd' |
acd |
SOP |
a+d' |
c+d' |
a'+c'+d |
POS |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
It is actually already in disjunctive normal form: c’d’ + a’d’ + acd
If you
expand it so that each minterm contains each variable,
this is what you get (minus the green minterms which are duplicates of the
minterms below them)
a’d’ = a’bd’ + a’b’d’ = a’bcd’ + a’bc’d’ + a’b’cd’ + a’b’c’d’ +
c’d’ = ac’d’ + a’c’d’ = abc’d’ + ab’c’d’ + a’bc’d’
+ a’b’c’d’ +
acd = abcd + ab’cd
It is
actually already in conjunctive normal form:
(a+d’)(c+d’)(a’+c’+d)
If you expand it so that each maxterm contains each
variable,
this
is what you get:
(a+b+c+d’)(a+b+c’+d’)(a+b’+c+d’)(a+b’+c’+d’)(a’+b’+c+d’)(a’+b+c+d’)(a+b’+c+d’)(a+b+c+d’)(a’+b’+c’+d)(a’+b+c’+d)
Note that the underlined maxterms are
duplicates as
are the outlined maxterms