Homework #7  KEY

 

Section 2.6 page 180 in textbook 

  1. #30 part a  Find the one’s complement representations, using bit strings of length six, of  2210

 

0101102

  1. #30 part c  Find the one’s complement representations, using bit strings of length six, of  -710

 

+7 =   0001112         -7 = 1110002

 

  1. #36  part a Find the two’s complement representations, using bit strings of length six, of  2210

0101102

 

remember:  positive numbers are the same in all three representations

 

  1. #36 Part c  Find the two’s complement representations, using bit strings of length six, of  -710

                                       

                         -710 = 1110012

     The next 6 questions relate to the Boolean function described below by a Karnaugh map: 

  

 

cd

 

 

 

 

ab

\

00

01

11

10

 

00

1

 

 

1

 

01

1

x

 

1

 

11

x

 

1

 

 

10

1

 

1

 

 

 

 

  1. find its simplest Product of Sums expression

 

 

cd

 

 

 

 

ab

\

00

01

11

10

 

00

0

1

1

0

 

01

0

x

1

0

 

11

x

1

0

1

 

10

0

1

0

1

 

     F’(a,b,c,d) = a’d +  c’d + acd’

     F’’(a,b,c,d) = F(a,b,c,d) = (a’d +  c’d + acd’)’ =  (a’’+d’)(c’’+d’)(a’+c’+d’’) =  (a+d’)(c+d’)(a’+c’+d)

 

  1. find its equivalent  Sum of Products expression

 

 

cd

 

 

 

 

ab

\

00

01

11

10

 

00

1

 

 

1

 

01

1

x

 

1

 

11

x

 

1

 

 

10

1

 

1

 

 

F(a,b,c,d) =    c’d’ +  a’d’ + acd

 

  1. Using truth tables, show that your answers to 5 and 6 produce the same function

 

a

b

c

d

a'

c'

d'

c'd'

a'd'

acd

SOP

a+d'

c+d'

a'+c'+d

POS

0

0

0

0

1

1

1

1

1

0

1

1

1

1

1

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

1

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

1

0

0

0

0

0

0

0

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

1

1

1

0

0

1

1

1

1

1

1

0

0

1

0

1

0

0

0

0

0

1

0

1

0

1

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

0

1

1

1

1

1

1

1

0

1

0

1

0

0

0

0

0

1

0

1

0

1

1

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

 

  1. Write the answer to #56   in disjunctive normal form –

It is actually already in disjunctive normal form:  c’d’ +  a’d’ + acd

 

If you expand it so that each minterm  contains each variable,

this is what you get (minus the green minterms which are duplicates of the minterms below them)

a’d’ = a’bd’ + a’b’d’ =  a’bcd’ + a’bc’d’ + a’b’cd’ + a’b’c’d’ +     

c’d’ = ac’d’ +  a’c’d’ =  abc’d’ + ab’c’d’ + a’bc’d’ + a’b’c’d’ +

          acd = abcd + ab’cd

 

  1. Write the answer to #65   in conjunctive normal form

It is actually already in conjunctive normal form:    (a+d’)(c+d’)(a’+c’+d)

 

         If you expand it so that each maxterm contains each variable,

         this is what you get:

          (a+b+c+d’)(a+b+c’+d’)(a+b’+c+d’)(a+b’+c’+d’)(a’+b’+c+d’)(a’+b+c+d’)(a+b’+c+d’)(a+b+c+d’)(a’+b’+c’+d)(a’+b+c’+d)

          Note that the underlined maxterms are duplicates  as are the outlined maxterms

 

  1. Using MMLogic (or any other circuit design program)  - construct the circuit for either #5  or #6 (inputs should be switches, output should be a lamp).  Bring a disk with your circuit on it to class (as well as a printout).