October 19 Homework

 

 

Name ________________________

 

1.  Draw the circuit (logic network) for the Boolean expression

     (x1x2+ x3)'  + x3

 

 

 

 

 

2.   Find the canonical sum-of-products form for the truth function in the table below.  ( Do not simplify it).

 

 

x1

x2

x3

f(x1  ,x2 ,x3 )

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

1

1

1

1

0

 

 

3  Write the minimal sum-of-products form for the Karnaugh map of the figure below

 

 

x1 x2

x1x2'

x1'x2'

x1'x2

x3x4

 

1

 

 

x3x4'

 

1

1

1

x3'x4'

1

1

1

 

x3'x4

 

1

 

 

 

 

4.   Write the following base 10 numbers as unsigned numbers in base 16

 

base 10

base 2

base 8

base 16

2472

 

 

 

24.72

 

 

 

2.472

 

 

 

.2472

 

 

 

 

 

 

 

 

5.  Write the following base 10 numbers in  ones complement, twos complement and sign magnitude notation using  7 bits.

 

base 10

sign magnitude

ones complement

twos complement

+27

 

 

 

-28

 

 

 

+17

 

 

 

-34

 

 

 

 

 

6.    Using prepositional logic (use the tables in your book), prove that  each of the following arguments is valid

 

 

A' ^ (B -> A)  -> B'

 

 

(A'-> B') ^ (A -> C)  -> (B -> C)

 

 

7.Using prepositional logic, prove that each argument is value.  Use the statement letters shown.

 

If Jane is more popular, then she will be elected.  If Jane is more popular, then Craig will resign.  Therefore, if Jane is more popular, she will be elected and Craig will resign.  J, E, C

 

 

8.  Using predicate logic,  prove that the following argument is value.  Use the predicate symbols shown.

 

Some plants are flowers.  All flowers smell sweet.  Therefore, some plants smell sweet.   P(x),  F(x),  S(x) 

 

9.  Prove that the product of two even integers is even.

 

 

 

10.  Using mathematical induction, prove that the following statement is true for every positive integer n.

 

2 + 6 + 10 + … + (4n-2) = 2n2

 

 

 

 

 

 

 

 

 

 

11.  Given the state table below for a given machine,  draw the state diagram and compute the ouput sequence for the following input sequence      10001

 

Present state

input

next state

output

s0

0

s0

1

s0

1

s2

1

s1

0

s1

0

s1

1

s0

0

s2

0

s0

0

s2

1

s1

0

 

 

 

     12.  For the following grammar G,  generate enough  valid sentences in the language so that you can  tell in English what the language consists of.  (show the sentences you generate)

 

G = (V,  VT, S, P)  where V = {0,1,A,B,S}  ,  VT  =  {0,1},  and P consists of

 

         S  ->  0

         S ->  0A

          A ->  1B

          B ->  0A

          B ->  0