Homework # 15

Due November 9, 2005

Name ___________________

 

ℕ = set of all nonnegative integers (note that 0 ℕ)

ℤ= set of all integers

ℚ= set of all rational numbers

ℝ= set of all real numbers

ℂ= set of all complex numbers

 

1.  S =  {a,b,c}        What is  the Cartesian product of the set S with itself?  (i.e. what is  S X S?) 

 

 

2.  For each of the following binary relations R on    decide which of the given ordered pairs belong to R.

a.  x R  y x = y + 1:  (2,2), (2,3), (3,3), (3,2)

 

b.  x R  y x divides y;  (2,4), (2,5), (2,6)

 

c.  x R  y x is odd;  (2,3), (3,4), (4,5), (5,6)

 

3.  Let  S =  { 1,2,3}

a.  If a relation R on S is reflexive, what ordered pairs must belong to R?

 

b.  If a relation R on S is symmetric and if (a,b) R, then what other ordered pair must

belong to R?

 

c.  If a relation R  on S is antisymmetric and if (a,b) and (b,a) belong to R, what must be

true?

 

4.  Let S = { 0,1,2,4,6}  Test the following binary relations on S for reflexivity, symmetry, antisymmetry and transitivity.  Tell  why the relation R  is not reflexive, symmetric, antisymmetric, or transitive if it isn't.

 

a.   R = { (0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6) }

    

b.  R = { (0,1), (1,0), (2,4), (4,2), (4,6), (6,4) }

 

5.  Give an example of a binary relation R  on set S = {1,2,3} that is neither reflexive nor irreflexive.

                         

6.  Give an example of a binary relation R  on set S = {1,2,3} that is neither symmetric nor asymmetric.