Homework # 17

due  November 17th

 

Name ___________________________

 

Section 7.3 – Representing Relations

 

Pages 494 to 496

 

1a     1   1   1

0       0  0

0       0  0

 

1b     0  1   0

1         1  0

0   0  1

 

 

2a     0 1 1 1

         0 0 1 1

         0 0 0 1

         0 0 0 0

 

2b    1 0 0 1

        0 1 0 0

        0 0 1 0

        1 0 0 0

 

4a    { (1,1), (1,2), (1,4), (2,1), (2,3), (3,2), (3,3), (3,4), (4,1), (4,3), (4,4)}

 

4b    {(1,1), (1,2), (1,3), (2,2),  (3,3), (3,4), (4,1), (4,4)}

 

8      not reflexive, not irreflexive, synnetric, not antisymmetric, not transitive

 

10a   matrix has 1000*1000 entries  ;  there are 1000 elements along the main diagonal which meet the desired criteria

          Subtracting thos 1,000 elements leaves 1,000,000-1,000 or  999,000 elements

        Half of those 999,000 or  499,500 also meet the criteria so the answer is 499,500 + 1,000 or  500,500

 

20.

 

 

24  { (a,a), (b,a), (b,b), (c,c), (a,c), (b,c)}