HW   #19 KEY

Due November 30, 2005

 

Name __________________________

 

Given the binary mantissa below where the binary point is assumed to be at the left of the mantissa answer the following questions

 

1011001101

  1. Show where the binary point is if the mantissa is multiplied by  22    10.11001101
  2. What is its base 10 value?   answer b is   2.8007812500E+00              
  3. Show where the binary point is if the mantissa is multiplied by  23   101.1001101
  4. What is its base 10 value?  answer d is  5.6015625000E+00
  5. Show where the binary point is if the mantissa is multiplied by  21   1.011001101
  6. What is its base 10 value?  answer f is  1.4003906250000000000000000E+00
  7. Show where the binary point is if the mantissa is multiplied by  81  101.1001101
  8. What is its base 10 value?  answer h is  5.6015625000E+00
  9. Show where the binary point is if the mantissa is multiplied by  83  101100110.1
  10. What is its base 10 value? answer j is  3.5850000000E+02
  11. Show where the binary point is if the mantissa is multiplied by  82  101100.1101
  12. What is its base 10 value?  answer l is  1.0940551758E-02
  13. Show where the binary point is if the mantissa is multiplied by  161 1011.001101
  14. What is its base 10 value?  answer n is  1.1203125000E+01
  15. Show where the binary point is if the mantissa is multiplied by  162  10110011.01
  16. What is its base 10 value?   answer p is  1.7925000000E+02
  17. Show where the binary point is if the mantissa is multiplied by  163 101100110100.
  18. What is its base 10 value?  answer r is  2.8680000000E+03

 

 

For each of the following pairs of numbers in twos complement form

i.                    add them together

ii.                 tell whether you are really adding or subtracting

iii.               tell what the base 10 value of the result is

iv.                tell whether there is overflow or not

 

a.                  010101012 =8510           b.    110011002 = -5210      c.   110101102 = -4210

001101102 =5410                  011001102 =10210           101011102 = -8210

 

i   100010112                001100102                     100001002

ii   adding                     subtracting                      adding

iii  -11710                      5010                                -12410

iv  overflow                 no overflow                     no overflow