Relational algebra is a theoretical language with operators that are applied on one or two relations to produce another relations.
Both the operands and the results are tables.

C.J. Date originally proposed eight operations but others have evolved

Three very basic ones are

	SELECT
	σ
	sigma
	applied to a single table;

takes rows that meet a specified condition

copies those rows into a new table

	SELECT tableName WHERE condition [GIVING newTableName]
symbolically

[InewTableName =] σ predicate (table-name)

or

σө (table-name)

	PROJECT
	п
	pi
	operates on a singl table
produces a vertical subset of the table

extracts the values of specified columns

eliminates duplicates

places the values in a new table
	PROJECT tableName OVER (ColName, … , colName) [GIVING newTableName]
symbolically

[InewTableName =] п colName, …, colName (tableName)

	JOIN
	
	
	
	

SELECT Student WHERE stuID = 'S1013' GIVING Result
SELECT Class WHERE room = 'H225' GIVING Answer

selection predicate is referred to as the theta-condition

the Greek letter theta, written ө is used to represent any operator, generally predicates involving any of the following operations

<, <=, >, >=, = , ≠, ^ (AND), v (OR), ⌐ (NOT)

SELECT Student WHERE major = 'Math' AND credits > 30

symbolically σmajor='Math' ^ credits > 30 (Student)
PROJECT Student OVER major GIVING Temp

We can combine the SELECT and PROJECT operations to give us only specific columns of certain rows but doing so requires 2 steps. Operation order not commutative

	PRODUCT is written tableNameA TIMES tableNameB

	THETA JOIN is a product followed by a SELECT
Student TIMES Enroll WHERE credits > 50

Student TIMES Enroll GIVING Temp

Select Temp WHERE credits > 50

σcredits > 50 (Student X Enroll)

Xө is sometimes used to stand for the theta join

A Xө B = σө (A X B)

	 EQUI JOIN is a produce in which the values of the common columns are equal

It includes both of the common columns

Student EQUIJOIN ENROLL

Student x student.stuId= Enroll.stuId Enroll
Student TIMES Enroll GIVING Temp

SELECT Temp WHERE Student.stuId = enroll.stuID

or

σ Student.stuID = Enroll.stuID (Student X Enroll)

	 NATURAL join is an equi join in which the repeated column(s) is/are eliminated

 This is the most common form of the join

 tableName1 JOIN tableName2 [GIVING newTableName]

 or

 tableName1 | x | tableName2

 Faculty JOIN Class

or

 Faculty | x | Class

Suppose we want to find the class and grades of student Ann Chin.

Find it by hand and then formulate the operations required in terms of relational algebra commands.

SELECT Student WHERE lastName= 'Chin' AND firstName = 'Ann' GIVING Temp1

Temp1 JOIN Enroll GIVING Temp2

PROJECT Temp2 OVER (classNo, grade) GIVING Answer

п classNo,grad((σ lastName= 'Chin' AND firstName = 'Ann' (Student)) | x | Enroll

п classNo,grad (п stuId (σ lastName= 'Chin' AND firstName = 'Ann' (Student)) | x | Enroll)

JOIN Student, Enroll GIVING Temp1

SELECT Temp1 WHERE lastName='Chin' AND firstName = 'Ann' GIVING Temp2

PROJECT Temp2 OVER (classNo, grade)

	 SEMI JOIN of two tables

 left-semijoin A | x B is found by taking the natural join of A and B and then projecting the result onto the attribues of A

The result will be just those tuples of A that participate in the join. Student LEFT-SEMIJOIN Enroll

 stuId lastName firstName major

 S1001 Smith Tom History

 S1002 Chin Ann Math
 S1010 Burns Edward Art

 S1020 Rivera Jane CSC

	 SEMI JOIN of two tables

 right-semijoin A x | B is found by taking the natural join of A and B and then projecting the result onto the attribues of B

The result will be just those tuples of B that participate in the join.

	OUTER JOIN of two tables

 Student OUTER-EQUIJOIN Faculty
 outer-equijoin of Student and Faculty where we compare Student.lastName with Faculty.name

 include all of the rows in Student EQUIJOIN Faculty where the Sudents tuples and Faculty tuples have the same last name

 THEN we add in the rows from Student which have no matching Faculty rows, placing null values in the facId, name, department, and rank columns

 THEN we add in the rows from Faculty which have no matchin Student rows, placing null values in the stuId, lastName, firstName, and major columns

	 Student LEFT-OUTER-EQUIJOIN Faculty

 outer-equijoin of Student and Faculty where we compare Student.lastName with Faculty.name

 include all of the rows in Student EQUIJOIN Faculty where the Sudents tuples and Faculty tuples have the same last name

 THEN we add in the rows from Student which have no matching Faculty rows, placing null values in the facId, name, department, and rank columns

	 Student RIGHT-OUTER-EQUIJOIN Faculty

 include all of the rows in Student EQUIJOIN Faculty where the Sudents tuples and Faculty tuples have the same last name

 THEN we add in the rows from Faculty which have no matchin Student rows, placing null values in the stuId, lastName, firstName, and major columns

	DIVISION
is a binary operation that can be defined on two relations

the entire structure of one of the relations (the divisor) is a portion of the structure of the other one (the dividend)

Result is all of the values in the attributes that appear only in the dividend appear with ALL the rows of the divisor

Club

Club Name

StuNumber

StuLastName

Computing

S1001

Smith

Computing

S1002

Chin

Drama

S1001

Smith

Drama

S1002

Chin

Drama

S1004

Lee

Karate

S1001

Smith

Karate

S1002

Chin

Karate

S1005

Lee

Stu

StuNumber

StuLastName

S1001

Smith

S1002

Chin

S1005

Lee

Club Divided By Stu

ClubName

Drama

Karate

PROJECT Club OVER (ClubName) GIVING Temp1
Temp1 TIMES Stu GIVING TEMP2

Temp2 MINUS Club GIVING Temp3

PROJECT Temp3 OVER ClubName GIVING Temp4

Temp1 MINUS Temp4 GIVING Quotient

Relations are basically sets of n-tuples

relational algebra includes a version of the basic set operations of union, intersection, and set difference

For these binary operations to be possible, the two relations on which they are performed must be union compatible.

This means that they must have the same basic structure.

They must have the same degree and attributes in the corresponding position in both relations and and the attributes must have the same domain.

The 3rd column in the first table must have the same domain as the 3rd column in the second table although the names could be different
The result of each of the set operations is a new table with the same structure as the two original tables.

Union Compatible relations

MainFac

	facID
	name
	departme;nt
	rank

	F101
	Adams
	Art
	Profesor

	F105
	Tanaka
	CSC
	Instructor

	F221
	Smith
	CSC
	Professor

BranchFac

	facID
	name
	departme;nt
	rank

	F101
	Adams
	Art
	Professor

	F110
	Byre
	Math
	Assistant

	F115
	Smith
	History
	Associate

	F221
	Smith
	CSC
	Professor

	UNION

is the set of tuples in either or both of the relations
MainFac UNION BranchFac

MainFac U BranchFac

	DIFFERENCE

is the set of tuples that belong to the first relation but not to the second

MainFac MINUS BranchFac

MainFac - BranchFac

	INTERSECTION

is the set of tuples in both of the relations

MainFac INTERSECTION BranchFac

MainFac ∩ BranchFac

