
Notes 2/24 – Mike Stanley

EXAM: March 5

NEXT ASSIGNMENT DUE: Thursday

Fraction

· body is incomplete (fill in to meet specification)

· Fractions package is given.

How to fill out the homework sheet:

· include name of procedure/function you are working on

· time you started

· time you finish

· success/failure (if not done in one sitting, circle failure and move to 1A)

Fraction is private

Fraction is a record (java equivalent = class)

Array has homogenous items in it (all int, all Boolean etc)

Record has heterogeneous items in it (part int, part enum etc)

· EXAMPLE

· A Student Record can have a name variable which would be a string and a JAC variable to hold and int.

Fraction has default initializations

· numerator = 0 (int)

· denom = 1 (pos)

Negative denom (multipoly num and denom by -1

Procedure can return 0, 1, or many values

· Preferably use when returning nothing or a lot of things

· Parameter list controls in and out.

Function returns exactly one value

NEW
Ada capablility that Java doesn’t have

· Overload existing operators

· When you have a function which is an overloaded operator you name it by putting the operator in double quotes.

· EX.) function “+” (x,y : Function) return Fraction;

· Cannot overload the = sign

· return tells the type to be returned

· USE MEANINGFUL NAMES

Function parameters are by default in

· You can have as many in parameters as you want

· Only one out

· You can use in

· EX.) function “+” (x,y : in Fraction) return Boolean;

Integer division examples:

2/3 returns 0

5/8 returns 0

10/5 returns 2

· Save Reduce for last because it is the hardest to write

· Can use GCD (Greatest common divisor)

· other ways to do it also

Pick easiest function to implement first

You can copy the spec into the body if it isn’t there already

· Just replace the semicolon with is

· You need a BEGIN and END

· EX.) In the spec: function MakeFraction (N,D : integer) return Fraction;

 In your body: function MakeFraction (N,D : integer) return Fraction is

begin

end MakeFraction;

· Don’t use two return statements

· EX.) function MakeFraction (N,D : integer) return Fraction is

 begin

temp : Fraction

if D < 0 then

temp := (-N,-D);

else

temp := (N,D);

end if;

return temp;

end MakeFraction;

· Example input and output using MakeFraction

· 3,4 (3,4

· -3,4 (-3,4

· -3,-4 (3,4

· 3,-4 (-3,4

Body of specification can access parts of the body type.

How to access part of a record:

function Numer (x:Fraction) return integer is

begin

x.Numerator; -- highlighted area is part of the record, x refers to the record

end Numer;

Using the overloaded “-“ operator:
function "-" (x, y : Fraction) return Fraction is
 N: integer;
 D: positive;
 F: Fraction;
begin
 N := Numer (x) * Denom(y) - Numer(y)*Denom(x);
 D := Denom (x) * Denom(y);
 F := MakeFraction (N,D);
 return F;
end "-";

What happens when run with 2/3 & 5/8

N = (2*8)-(5*3) = 16 -15 = 1

D = 3 * 8 = 24

F (creates the fraction (F is returned)

MAKE SURE TO REDUCE! *********
· Think about why there isn’t <=

function FractToInt (x: Fraction) return integer is

begin

return Numer(x)/Denom(x); --highlighted parts are functions

end FractToInt;
· Ada will not let you divide two different data types

· Ex.) 3.6 / 5 won’t work

· Inside body use function name to access +, -, *, /

· Outside the body is tricky

· Later we will want a fraction_io to output fraction to make things easier

With the fractions package using an overloaded operator with two fractions as the parameter:

fraction3 := fraction.”-“ (fraction1, fraction2);

· If returning a Boolean there is nothing to reduce

· Reduce when you make a fraction

· Otherwise it is needed in separate functions

· Prof Adams suggests that we write Reduce as a separate function and later embed call to Reduce in our functions.

** upload Fractions.ads (the spec) to help Prof. Adams run our program

** the worksheet is the only thing needed for class.

** check under assignments on blackboard and Program 5 for more info
