CS240 Notes 1-20-09

TA assistance for installs : Chris Plummer - plummercs@jmu.edu

ADA Language Reference Manual can be found at http://www.adahome.com/rm95/
Went over some Essential ADA Terminology from the tutorial entitled

ADA in a Day .pdf presented by Michael Feldman at SIGAda 2008.
The following notes are best understood if looking a a copy of bin_Search

- could write a procedure specification such as the one in bin_Search, which does not

which only declares types but doesn't declare other procedures

Professor Adams showed her test cases for bin_Search. The values entered and results can be found in file named Test_Case_Results.doc (see Blackboard)

* -5 is neither a natural or positive, so a CONSTRAINT_ERROR occurs

- Must use an exception handler to correct

- in ADA exceptions are “raised”, then “handled”

* when entering 11 for the total of values in the List length (when List is an array whose indexes go from 1 to 10), an error will occur, not at compile time, but when the actual 11th value is input. This is because 11 is outside the range (0…10). Program will raise a CONSTRAINT_ERROR saying Index out of Bounds]

· when inputting a hyphen and hitting enter when trying to input a number will get an ADA.IO_EXCEPTIONS_DATA_ERROR because a hyphen isn't a number (it's a character).
-the bin_search must have list values in ascending order for proper functionality (because bin_Search does a binary search which requires an ordered list).
-if saved file is different name than procedure “_____” in the written program then an error occurs stating, “file name does not match init name”

* so for example the procedure test_stuff must be saved, have an end test_stuff and be saved as test_stuff.adb

The following notes are best understood if you are looking at the code for test_stuff.

Remember that the code was modified "corrected" in response to compiler messages.
Code reference
Procedure test_stuff

Line 5, pos 19 “=” should be “:=”
Integer, positive and natural are NOT reserved words. A reserved word is a word word that cannot be used in any context other than pre-specified…i.e. as a procedure name, variable name, etc)

A predefined term is already there and compiler knows what the term means; It can be redefined, but will lose access to original definition

So….integer, positive, natural should be used only as data types

Code reference
Procedure test_stuff

Line 6 error: “value not in range of Standard_Positive” “CONSTRAINT_error”

This error occurred because I entered a negative number which is not a value in the range of positive numbers which go from 1 to integer'last.
The single green arrow in jGrasp performs both a syntax check and semantic check
Line 5

· so naturalNumber can be assigned 0, but

Line 6 positiveNumber cannot be assigned 0, because it is not in Range of positive type

In jGrasp, when reviewing created files from compiling and linking an ada program, you only need to keep the .ads, .adb, and .exe files

Any file starting with b~ can be deleted as can those with extension .ali, .o
Remember – in java a warning is considered uncompileable
But in for example in test_stuff the ADA compiler warning “variable positiveNumber is never read” is just a warning, but compiles anyhow
 *this warning in test_stuff has to do with not being used by procedure

-if only output will be strings or characters only need WITH ada.text_io;

-if output will include integers need WITH ada.integer_text_io;

Changed to test_stuff2
Line 1 WITH ada.integer_text_io;

Line 7 ada_interger_text_io.put (naturalNumber);
Line 9 ada_interger_text_io.put (positiveNumber);
 -Line 9 will give a warning and says that no value is placed here, but will not stop program from compiling

Line 10 end test_stuff2;

- causes a compile error(states that variable is misspelled)

When you declare a variable, space is allocated in memory associated with the variable name that is the right size to hold a value of the declared type. In Ada, if you try to print a variable that has not been assigned a value by you AND the value stored in the memory space associated with that variable can be interpreted as a value of the correct type, it will print the value.
We are not going to use USE clauses. Therefore, when a package is declared with a type inside, then any procedures that it contains when called from the executable program must use a fully qualified name

packageName.procedure_name

Example: In our bin_search_test2.adb, we had a WITH clause (WITH bin_search) but no USE clause (USE bin_search omitted), then when referring to the data type Integer_Array we must use the fully qualified name bin_search.Integer_Array or bin_test_Search2.adb will not compile.
Procedure bin_search_test2 demonstrates:

· nesting a procedure inside another procedure (Get_List is nested inside bin_search_test2.
· bin_search_test2 that uses variables that are declared inside its procedure
· bin_search_test2 calls the nested procedure Get_List in the following statement
 Get_list(List=> List, Count=> Num_Elements);

Let's talk about Ada's parameter modes
· OUT - an out parameter can be written to; OUT parameters are used to store (write) information into variables. Used to obtain values from user, or to calculate results and make them available to calling program or sub-program.

· IN - an in parameter can be read from; IN parameters are used to pass information INTO procedures and functions which can retrieve (i.e. read) the values from memory.
· IN OUT parameter can be read from and written to.
Unlike Java, whose methods can only return a single value, procedures in ADA can return 0, 1, or many values
The example below will not compile correctly but the main.doc on Blackboard if copied and pasted into jGrasp and saves as main.adb will
WITH ada.integer_text_io;

Procedure main is

a,b,c : Integer; -- this variable c is never read and never assigned

 -- it has nothing to do with the c in procedure swap

procedure swap(c: in out integer: d: in out integer) is

temp: integer;

begin

temp := c;

c := d;

d := temp;

end swap;

ada.integer_text_io.Put(a,b); -- need separate call statements

swap(a,b);

ada.integer_text_io.put(a,b); -- need separate call statements
end main;
