
Garland, Mehta, Roehricht, Schulze

The L4 microkernel

Harrisonburg, November 29, 2003

CS-450 Section 3

Operating Systems Fall 2003

James Madison University
Harrisonburg, VA

Contents

1 An Introduction to L4Ka 1
1.1 About Microkernels . 1

2 The design of L4Ka 3
2.1 I/O Implementation . 5

3 Performance 5
3.1 IPC . 6

4 The security of the system 6

5 Conclusion 7

”Our vision is a microkernel technology that can be and is used advan-
tageousely for constructing any general or customized operating system”.
[Liedtke et al 2001]

1 An Introduction to L4Ka

L4 is a microkernel that was created by Jochen Liedtke at IBM, and the University
of Karlsruhe in the early 1990’s. It is based on Eumel and L3, its predecessor, and
was written entirely in assembly language for use solely with the ix86 processor family.
Current development is done by research groups at the University of Karlsruhe1, the
University of Dresden2 (both in Germany) and the University of New South Wales in
Australia3. The current implementation is called L4Ka and is based mainly on research
conducted over the last 20 years. The L4Ka microkernel is open source and released
under the two-clause BSD license. This means that anybody is free to use the source
code for his or her own purposes, whether that be for research projects, security checks,
or any other use.

The L4Ka microkernel allows you to put any supported operating system on top
of it. The L4Linux research group at the University of Dresden is currently work-
ing on an implementation to let a Linux environment run on top of the L4 microker-
nel [L4Linux]. Future support for the Microsoft WindowsXP operating systems is also
planned [L4Windows]. In addition the famous GNU HURD operating system has re-
cently migrated from the old Mach microkernel to L4.

1.1 About Microkernels

Microkernels are the counterpart to the well-known ”monolithic kernels” presently used
by most common operating systems. The name implies that the kernel is much smaller
than its monolithic counterpart. Some of the more prominent microkernels are Mach
(the basis for MacOS) and QNX. Whether a kernel can be considered micro as opposd
to macro is determined more so on the basis of the functions it provides rather than
the size of the source code. Nevertheless, we can note that the current implementation
of the L4::Pistachio/ia32 microkernel has about 10,000 lines of code, compared to the
Linux kernel, which exceeds 2.7 million lines.

A microkernel is a kernel that provides only basic functionality. This is typically
limited to:

• process management

• memory management

• functions for synchronization and communication

All of these tasks are OS independent und run in protected kernel mode. Hardware
drivers and other common operating system capabilities, such as file system management
and networking protocols can be implemented in user space. These tasks are handled
using a single-server or multi-servers on top of the kernel. A single-server provides all of

1http://l4ka.org/
2http://os.inf.tu-dresden.de/
3http://www.cse.unsw.edu.au/ disy/L4/

1

these components in one single server, as opposed to a multi-server, which uses several
different servers, each doing their own task. Communication between different servers
is handled using inter-process communication (IPC) mechanisms. With this design, a
broken server can be restarted without having to reboot the whole machine. As the
main operating system functionality is implemented in user space, fast inter-process
communication is a major design goal. Old microkernel approaches tended to be slow
because of poorly designed IPC mechanisms, but drastic improvements have been shown
in IPC delay times with the L4

These design issues provide more scalability, extensibility, and portability when com-
pared to monolithic kernels. Because a microkernel is ”OS-neutral”, different operating
systems can be hosted on top of it. The system above the microkernel can be eas-
ily ported to other hardware architecture if the microkernel supports them – only the
microkernel needs recompiling for the new architecture and not the OS itself or its associ-
ated applications. A microkernel can also easily be extended to work in a multi-processor
environment.

Process
Manager

Memory
Manager

File
System

Hardware
Driver

. . .

API

Process
Manager

Memory
Manager

Application Application Application Applications File System Hardware
Drivers

. . .

API

user mode user mode

kernel modekernel mode

(b) Microkernel(a) Monolithic Kernel

Figure 1: Comparism between a Monolithic Kernel and a Microkernel

Characteristics of microkernels:

Robustness As we mentioned before, the user of a microkernel based OS is able to
restart different services which run in user space instead of having to restart the
OS. This makes the system robust and highly available. Furthermore, corrupt or
falsely implemented services will never harm the kernel, because everything runs in
user space and has no access to the kernel memory space. Microkernels are easier
to maintain and debug as their size is much smaller than the size of monolithic
kernels.

Security On of the main issues nowadays is the security of a system. In monolithic kernel
based operating systems, root has access to everything on the machine. Whenever a
user makes use of the hardware he gets root privileges (in Unix and Linux by setuid
root) in a protected mode by using the drivers for the particular hardware. This

2

causes a potential security risk, for example, if a driver is implemented incorrectly.
One famous example was the ptrace()-bug in some Linux kernels up to 2.4.22 which
gave any user root privileges by loading a kernel module and using an exploit (more
information is provided in [Szombierski 2003]). Something like that cannot happen
to microkernels because the way to get root privileges is far more restricted.

Memory Usage The whole kernel (code plus data) must always be memory resident
during runtime. In a monolithic kernel based OS, we cannot swap out parts of the
OS that are used infrequently, but in a microkernel system we can. This idea is
already commonly used even in monolithic systems (parts of the the X server in a
Unix-like operating system such as Linux can be swapped out of main memory).

Performance Whenver we will operate in kernel mode in a microkernel, interrupts are
turned off to prevent critical processes from interruption. But as most services can
run without making use of interrupts by the kernel this privilege can be passed
better to processes with realtime requirements.

A main disadvantage of the microkernel architecture can be the communication chan-
nel. In a microkernel system that uses an operating system on top of it, communication
between these two facilites must be fast because they do not have access to the same
memory areas, and therefore must constantly be sending communications to each other.
This is done by IPC and may reduce system performance if not handled carefully. This
is a reason for the extensive research being conducted in this field. Developers of L4Ka
were able to prove that costs for regular IPC calls can be reduced from typically 100ms
down to under 5ms [Liedtke 1993].

2 The design of L4Ka

L4 is refered to as a ”second generation” microkernel. This means the developers tried
to learn from the mistakes that were made by designers of the microkernels of the first
generation in the early 1990’s. One of the most famous first generation microkernels was
the Mach. It, along with other first generation microkernels, was not originally designed
from the bottom up to be a true microkernel. The attempt was to take a monolithic
kernel and source out as many services that could be outsourced (e.g. the file system
or even parts of the memory management). A good microkernel should implement only
basic functionality mechanisms, which can be used to achieve more complex user specific
strategies in areas such as the file system and hardware management.

The developers of L4 had to decide which parts of a kernel are able to run in user
space without losing functionality or security. But the L4 kernel does not need to have
a concept for threads4 or even a scheduler. The kernel only provides system calls that
can handle the preemption of processes.

4even though L4 supports user level threads

3

Threads
Threads are the basic active entity in execution. Only threads can be scheduled. The
communication from one thread to another is done by IPC calls. Each thread has a
register set (IP, SP, user-visible registers, processor state), an associated task, address
space, a page fault handler (a pager that is built as a thread and receives page faults via
IPC), an exception handler, preempters and some scheduling parameters like priority or
time slice.

Tasks
A task provides an environment for the execution of processes and consists of a virtual
address space, ports for communication, and at least one thread. The number of threads
is no longer fixed since the latest development of the L4 implementation (Pistachio
0.3). All but one thread are created inactively and can be activated via system calls
(lthread ex regs()). A clan consists of one or more related tasks and every clan has a
single chief task. Therefore, every task has an associated clan and chief. A task creating
another task becomes the chief of the new task. A task can only be killed directly by
its chief or indirectly when its chief is killed.

Task

Task

CLAN CLAN

Task
Task

Task

Task

Task

Task

Chief

Chief Chief

CLAN

Figure 2: Tasks from different clans have to communicate via the chiefs of their clans.

Flexpages and Virtual Address Space
Flexpages are flexible large memory pages. L4 makes use of them to access main memory
and I/O memory of devices. The virtual address space is made up of these flexpages,
and system calls are provided to manage them:

grant The memory page is granted to a new user and cannot be used anymore by its
former user.

map This implements shared memory – the memory page is passed to another task but
can be used by both tasks.

4

flush The memory page that has been mapped to other users will be flushed out of
their address space.

2.1 I/O Implementation

L4 does not provide native I/O support by iteself. One of the design decisions was to let
I/O run in user space only. Therefore, no interface is offered to access peripheral devices
directly, but the user can make use of the virtual address space functions provided by
L4. The I/O address spaces of the hardware devices (including I/O memory and ports)
can be mapped to the device drivers which run in user space by using map and grant.
Hardware interrupts are caught by the kernel via IPC and will be passed to the device
drivers. Page faults are handled the same way, which makes it possible to implement
even the memory manager in user space.

kernel space

user space

L4

SCSItty

Devices OS other OS

pager except
handler

syscall
handler

subsystem

Client Client

Figure 3: The Design of the Relationship between the L4 Microkernel and the Operating
Systems, Devices and Applications

3 Performance

The Performance was one of the major dilemmas in the first generation of microkernels.
One of the most prominent representatives was the Mach microkernel. Liedtke and other
researchers evaluated the performance of microkernels compared to monolithic kernels.
Most of them found that the interprocess communication is the real bottleneck in a
microkernel system, because it is so heavily used. On a 486 processor, Mach needed

5

about 900 processor cycles for a simple system call. A system call involves switching
to kernel mode and then back to user mode. To switch from one mode to the other is
costly (about 80 cycles to switch to kernel mode and 20 cycles to switch to user mode
on a 486 processor). Therefore, Mach’s system calls caused an overhead of about 800
cycles. Liedtke’s research has produced far better results [Liedtke 1993].

Some parts of the kernel are programmed in architecture-dependent assembly code,
mostly those parts that are used frequently by the operating system and the applications
(eg. system calls). Due to this limitation, the kernel is not hardware independant, but
most parts are implemented in C++ and can be interchanged for every architecture.

The kernel provides real time applications the possibility to allocate memory that is
not liable to the pager. As this part will never be swapped out of main memory, you
can calculate better on its execution time.

3.1 IPC

Interprocess communication is a major part of the L4 microkernel. It had to be quite
fast and also be designed carefully with regards to security issues. Even interrupts are
handled by IPC calls. L4 does not use special channels to communicate, the communi-
cation is handled by threads and their uids (the receiver decides if the request is granted
or not on the basis of the uid of the incoming thread).

As indicated before, most parts of the operating system are outsourced from the ker-
nel. This means that every device driver runs in a different address space, separate
from the kernel address space. Therefore, in order to make hardware devices accessible,
inter-process communication (IPC) is again necessary. Every single request to a device
causes two messages (one for the request and another one for the reply). This may
cause large overhead if these IPC calls are not implemented in a fair and proper man-
ner. The main design goal must therefore be to implement a super fast IPC protocol
[Liedtke et al 2000].

4 The security of the system

The security mechanism in L4’s microkernel design is based on secure domains, namely,
tasks, clans and chiefs. We mentioned before that the communication is not based on
a channel, but is done from thread to thread. This creates a need for some control
mechanisms in message passing. A clan is a group of different, but related tasks. If
two threads from the same clan want to communicate with each other, it is done by
normal IPC calls. Whenever two threads from separate clans want to communicate,
the communication has to pass the chiefs of the clans. Those chiefs are able to either
manipulate the message or simply pass it through to the other chief. A clan is assigned
to only one machine and therefore if you want to pass a message over the machine’s
border, the protocol can change to, for example, TCP/IP.

6

5 Conclusion

Overall Micro kernels have been shown to be the very competitive with monolithic
kernels, since micro kernels are being created with improved programming techniques.
Micro kernels provide basic functionality for process management, memory management,
and communication functions. Micro kernels are known to be very robust, have good
security and memory usage, as well as performance. The L4 micro kernel is a second
generation microkernel that is still in development stages. One of the L4’s major compo-
nents currently is inter-process communication and making it more efficient. Finally the
main security system of the L4 is it secure domains, including tasks, clans, and chiefs.

7

References

[Haeberlen 2003] Haeberlen, A., Elphinsotne, K. (September 2003): User-level
Management of Kernel Memory; ACSAC’03, Aizu-Wakamatsu City, Japan
http://i30www.ira.uka.de/research/documents/l4ka/userlevel-mgmt-of-kernel-
mem.pdf

[L4Linux] L4Linux: Linux on L4 http://os.inf.tu-dresden.de/L4/LinuxOnL4/

[L4Windows] WindowsXP on L4 (offered Study/Diploma Thesis)
http://i30www.ira.uka.de/teaching/thesistopics/index.php?thid=40

[Liedtke 1993] Liedtke, J. (December 1993): Improving IPC by kernel design;
14th Symposium on Operating System Principles, Asheville, North Carolina
http://i30www.ira.uka.de/research/documents/l4ka/improving-ipc.pdf

[Liedtke 1996a] Lietdke, J. (September 1996): Toward Real µ-
kernels; Communications of the ACM, 39(9), pp. 70-77
http://i30www.ira.uka.de/research/documents/l4ka/towards-ukernels.pdf

[Liedtke 1996b] Liedtke, J. (October 1996): µ-Kernels Must And Can Be Small; In
5th IEEE International Workshop on Object-Orientation in Operating Systems
(IWOOOS), Seattle, WA, USA
http://i30www.ira.uka.de/research/documents/l4ka/ukernels-must-be-small.pdf

[Liedtke et al 2000] Liedtke, J. et al (September 2000): Synchronous IPC over
Transparent Monitors; In 9th SIGOPS European Workshop, Kolding, Denmark
http://i30www.ira.uka.de/research/documents/l4ka/synchronous-ipc.pdf

[Liedtke et al 2001] Liedtke, J. et al (April 2001): The L4Ka Vision; White Paper;
http://i30www.ira.uka.de/research/documents/l4ka/L4Ka.pdf

[Pistachio] L4Ka::Pistachio microkernel http://l4ka.org/projects/pistachio/

[Ruckdeschel 2002] Ruckdeschel, H. (November 2002): Microkernel Betriebssysteme
(Mach, L4, Hurd); Erlangen, Germany
http://www4.informatik.uni-erlangen.de/Lehre/WS02/PS KVBK/talks/ausarbeitung-
microkernel.pdf

[Szombierski 2003] Szombierski, A. (2003): linux kmod/ptrace bug – details
http://cert.uni-stuttgart.de/archive/bugtraq/2003/03/msg00266.html

8

