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CPU-Scheduling Algorithms (for Processes or Threads)

1. First-Come-First-Served

2. Shortest Job First

3. Shortest Remaining Time Next

4. Round-Robin Scheduling

5. Priority Scheduling

6. Priority Scheduling with Multiple Queues

7. Shortest Process Next

8. "Guaranteed" Scheduling

9. Lottery Scheduling

10. Fair-Share Scheduling
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Part I:  PROCESSES
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Multiprogramming

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-1.
© 2008 Pearson Education
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Initiators of Process Creation

1. System Initialization (Boot-Up)

2. Explicit User-Initiation (e.g., issuance of a CLI command)

3. Existing Process via issuance of a Process-Creation System Call

4. Long-Term Scheduler, in accommodating a submitted batch job
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Initiators of Process Termination

1. Completion of assigned task:  normal termination (voluntary)

2. Exit upon encountering a specifically chosen error (voluntary)

3. Occurrence of a fatal error (involuntary)

4. Explicitly ordered by another (usually ancestral) process (involuntary)
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Kinds of Processes

1. Foreground

2. Background

3. Daemon
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Simple Model of Process States and Process Transitions

NOTE:  Fourth state (not shown):  Terminated

Causal events for transition:

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-2.
© 2008 Pearson Education
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Individual Processes, and the
Underlying OS for Interrupt-Handling & Scheduling

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-3.
© 2008 Pearson Education
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Contents of a Process Descriptor

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-4.
© 2008 Pearson Education
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Sequence of Activities
Following the Occurrence of an Interrupt

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-5.
© 2008 Pearson Education
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Degree of Multiprogramming
Tanenbaum (2008).  Modern

Operating Systems.  3rd Edition.
Figure 2-6.

© 2008 Pearson Education

UCPU = 1 – p n

% CPU Utilization Depends on
the Degree of Multiprogramming
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Part II:  THREADS



8

10-Oct-2008 © 2008 Charles Abzug 15

Word Processor with Multiple Threads

1. Waits for and then handles input from keyboard.
2. Reformats the document in background.
3. Autosaves the document at the specified time interval, copying out the current

content onto the disk (foreground).
4. Sends the document to the print SPOOLer.

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-7.
© 2008 Pearson Education
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Web Server with Multiple Threads

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-8.
© 2008 Pearson Education
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Web Server:  Dispatcher Thread

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-9a.
© 2008 Pearson Education
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Web Server:  Worker Thread

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-9b.
© 2008 Pearson Education
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Alternative Approaches to the Design of a Web Server

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-10.
© 2008 Pearson Education
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Single-Threaded and Multi-Threaded Processes

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-11.
© 2008 Pearson Education
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Items Shared by All the Threads of a Single Process,
and Items Unique to Each Thread

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-12.
© 2008 Pearson Education
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Separate Stack for Each Thread

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-13.
© 2008 Pearson Education
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Function Calls for POSIX Threads (Pthreads)

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-14.
© 2008 Pearson Education
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Example of a Program that Uses Pthreads

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-15.
© 2008 Pearson Education
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User-Level Threads vs. Kernel-Level Threads

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-16.
© 2008 Pearson Education
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Multiplexing of Several User-Level Threads
Onto a Single Kernel-Level Thread

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-17.
© 2008 Pearson Education
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Creation of a New Thread
in Response to the Arrival of a Message

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-18.
© 2008 Pearson Education
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Inter-Thread Conflicts in the Use of a Global Variable

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-19.
© 2008 Pearson Education
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Private Global Variables

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-20.
© 2008 Pearson Education
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Race Conditions

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-21.
© 2008 Pearson Education
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Mutual Exclusion from a Critical Region

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-22.
© 2008 Pearson Education
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Use of a Spin Lock to Achieve Mutual Exclusion

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-23.
© 2008 Pearson Education

Process 0: Process 1:
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Peterson's Algorithm for Achieving Mutual Exclusion

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-24.
© 2008 Pearson Education
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Use of an Atomic "Test and Set Lock" (TSL)
Machine Instruction to Achieve Mutual Exclusion

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-25.
© 2008 Pearson Education
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Entering and Leaving the Critical Region Using "XCHG"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-26.
© 2008 Pearson Education
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Race Condition in the "Producer-Consumer Problem"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-27.
© 2008 Pearson Education
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Use of Semaphores in the "Producer-Consumer Problem"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-28.
© 2008 Pearson Education
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Use of mutex_lock and mutex_unlock
to Achieve Mutual Exclusion

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-29.
© 2008 Pearson Education
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Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-30.
© 2008 Pearson Education

POSIX Threads:  Procedure Calls for Mutual Exclusion
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Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-31.
© 2008 Pearson Education

POSIX Threads:  Procedure Calls Pertaining to 
Condition Variables
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Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-32a.
© 2008 Pearson Education

POSIX Threads:  Use of Mutexes and Condition 
Variables to Solve the Producer-Consumer Problem
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Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-32b.
© 2008 Pearson Education

POSIX Threads:  Use of Mutexes and Condition 
Variables to Solve the Producer-Consumer Problem
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Use of the Monitor, a Programming-Language Construct,
to Achieve Mutual Exclusion

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-33.
© 2008 Pearson Education
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Use of a Monitor to Effect Mutual Exclusion
in the "Producer-Consumer Problem"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-34.
© 2008 Pearson Education
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The "Producer-Consumer Problem:  Solution in Java (1)

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-35"a".
© 2008 Pearson Education
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The "Producer-Consumer Problem:  Solution in Java (2)

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-35"b".
© 2008 Pearson Education
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Message-Passing Used to Solve
the "Producer-Consumer Problem:

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-36.
© 2008 Pearson Education
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Use of a Barrier to Enforce
the Synchronization of Multiple Processes

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-37.
© 2008 Pearson Education

Last process has
reached the barrier.
All processes may
now pass through.

All processes are
approaching the barrier.
None has yet reached it.

Several processes have
reached the barrier
and are waiting until

all are present.
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CPU-Bound and I/O-Bound Processes

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-38.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 50

Goals of the Scheduling Algorithm:
Dependent upon the Computing Environment

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-39.
© 2008 Pearson Education
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Long-Term (Admission) Scheduler, Medium-Term 
(Memory) Scheduler, and Short-Term (CPU) Scheduler

NOTE:  This figure did not 
come from our course text.
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive
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Effectiveness of "Shortest-Job First" Scheduling

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-40.
© 2008 Pearson Education

Jobs run in order of arrival:
First-Come-First-Served (FCFS)

Shortest Jobs run First (SJF)
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE
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Round-Robin Scheduling

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-41.
© 2008 Pearson Education

Job 'B' gets the processor:

Job 'B' uses up its quantum:
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
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Priority-Based Scheduling

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-42.
© 2008 Pearson Education
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

8. "Guaranteed" Scheduling (better name:  "Equitable" Scheduling); Interactive,
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

8. "Guaranteed" Scheduling (better name:  "Equitable" Scheduling); Interactive,
PREEMPTIVE

9. Lottery Scheduling (with Time Quantum): Interactive , PREEMPTIVE
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CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

8. "Guaranteed" Scheduling (better name:  "Equitable" Scheduling); Interactive,
PREEMPTIVE

9. Lottery Scheduling (with Time Quantum): Interactive , PREEMPTIVE

10. Fair-Share Scheduling (with Time Quantum): Interactive, PREEMPTIVE
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Scheduling of User-Level Threads

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-43a.
© 2008 Pearson Education
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Scheduling of Kernel-Level Threads

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-43b.
© 2008 Pearson Education
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The "Dining Philosophers Problem"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-44.
© 2008 Pearson Education
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Deadlock or Starvation
in the "Dining Philosophers Problem"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-45.
© 2008 Pearson Education
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Use of Semaphores to Solve
the "Dining Philosophers Problem"  (1)

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-46a.
© 2008 Pearson Education
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Use of Semaphores to Solve
the "Dining Philosophers Problem"  (2)

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-46b.
© 2008 Pearson Education
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Use of Semaphores to Solve
the "Readers & Writers Problem"

Tanenbaum (2008).  Modern
Operating Systems.  3rd Edition.

Figure 2-47.
© 2008 Pearson Education
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