
1

PROCESSES & THREADS

Charles Abzug, Ph.D.
Department of Computer Science

James Madison University
Harrisonburg, VA 22807

Voice Phone: 540-568-8746; Cell Phone: 443-956-9424
E-mail: abzugcx@JMU.edu OR CharlesAbzug@ACM.org

Home Page: https://users.cs.jmu.edu/abzugcx/public/index.htm

© 2008 Charles Abzug

10-Oct-2008 © 2008 Charles Abzug 2

Tanenbaum, Andrew S. (2008). Modern Operating Systems. Third Edition. Upper
Saddle River, NJ: Prentice-Hall. ISBN: 0-13-031358-0.

CHAPTER 2: Processes and Threads

Sobell, Mark G. (2005). A Practical Guide to Linux Commands, Editors, and Shell
Programming. Upper Saddle River, NJ: Prentice-Hall Professional Technical
Reference. ISBN: 0-13-147823-0 (alk. paper).

CHAPTER 3:

2

10-Oct-2008 © 2008 Charles Abzug 3

CPU-Scheduling Algorithms (for Processes or Threads)

1. First-Come-First-Served

2. Shortest Job First

3. Shortest Remaining Time Next

4. Round-Robin Scheduling

5. Priority Scheduling

6. Priority Scheduling with Multiple Queues

7. Shortest Process Next

8. "Guaranteed" Scheduling

9. Lottery Scheduling

10. Fair-Share Scheduling

10-Oct-2008 © 2008 Charles Abzug 4

Part I: PROCESSES

3

10-Oct-2008 © 2008 Charles Abzug 5

Multiprogramming

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-1.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 6

Initiators of Process Creation

1. System Initialization (Boot-Up)

2. Explicit User-Initiation (e.g., issuance of a CLI command)

3. Existing Process via issuance of a Process-Creation System Call

4. Long-Term Scheduler, in accommodating a submitted batch job

4

10-Oct-2008 © 2008 Charles Abzug 7

Initiators of Process Termination

1. Completion of assigned task: normal termination (voluntary)

2. Exit upon encountering a specifically chosen error (voluntary)

3. Occurrence of a fatal error (involuntary)

4. Explicitly ordered by another (usually ancestral) process (involuntary)

10-Oct-2008 © 2008 Charles Abzug 8

Kinds of Processes

1. Foreground

2. Background

3. Daemon

5

10-Oct-2008 © 2008 Charles Abzug 9

Simple Model of Process States and Process Transitions

NOTE: Fourth state (not shown): Terminated

Causal events for transition:

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-2.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 10

Individual Processes, and the
Underlying OS for Interrupt-Handling & Scheduling

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-3.
© 2008 Pearson Education

6

10-Oct-2008 © 2008 Charles Abzug 11

Contents of a Process Descriptor

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-4.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 12

Sequence of Activities
Following the Occurrence of an Interrupt

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-5.
© 2008 Pearson Education

7

10-Oct-2008 © 2008 Charles Abzug 13

Degree of Multiprogramming
Tanenbaum (2008). Modern

Operating Systems. 3rd Edition.
Figure 2-6.

© 2008 Pearson Education

UCPU = 1 – p n

% CPU Utilization Depends on
the Degree of Multiprogramming

10-Oct-2008 © 2008 Charles Abzug 14

Part II: THREADS

8

10-Oct-2008 © 2008 Charles Abzug 15

Word Processor with Multiple Threads

1. Waits for and then handles input from keyboard.
2. Reformats the document in background.
3. Autosaves the document at the specified time interval, copying out the current

content onto the disk (foreground).
4. Sends the document to the print SPOOLer.

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-7.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 16

Web Server with Multiple Threads

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-8.
© 2008 Pearson Education

9

10-Oct-2008 © 2008 Charles Abzug 17

Web Server: Dispatcher Thread

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-9a.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 18

Web Server: Worker Thread

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-9b.
© 2008 Pearson Education

10

10-Oct-2008 © 2008 Charles Abzug 19

Alternative Approaches to the Design of a Web Server

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-10.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 20

Single-Threaded and Multi-Threaded Processes

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-11.
© 2008 Pearson Education

11

10-Oct-2008 © 2008 Charles Abzug 21

Items Shared by All the Threads of a Single Process,
and Items Unique to Each Thread

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-12.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 22

Separate Stack for Each Thread

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-13.
© 2008 Pearson Education

12

10-Oct-2008 © 2008 Charles Abzug 23

Function Calls for POSIX Threads (Pthreads)

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-14.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 24

Example of a Program that Uses Pthreads

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-15.
© 2008 Pearson Education

13

10-Oct-2008 © 2008 Charles Abzug 25

User-Level Threads vs. Kernel-Level Threads

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-16.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 26

Multiplexing of Several User-Level Threads
Onto a Single Kernel-Level Thread

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-17.
© 2008 Pearson Education

14

10-Oct-2008 © 2008 Charles Abzug 27

Creation of a New Thread
in Response to the Arrival of a Message

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-18.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 28

Inter-Thread Conflicts in the Use of a Global Variable

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-19.
© 2008 Pearson Education

15

10-Oct-2008 © 2008 Charles Abzug 29

Private Global Variables

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-20.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 30

Race Conditions

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-21.
© 2008 Pearson Education

16

10-Oct-2008 © 2008 Charles Abzug 31

Mutual Exclusion from a Critical Region

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-22.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 32

Use of a Spin Lock to Achieve Mutual Exclusion

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-23.
© 2008 Pearson Education

Process 0: Process 1:

17

10-Oct-2008 © 2008 Charles Abzug 33

Peterson's Algorithm for Achieving Mutual Exclusion

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-24.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 34

Use of an Atomic "Test and Set Lock" (TSL)
Machine Instruction to Achieve Mutual Exclusion

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-25.
© 2008 Pearson Education

18

10-Oct-2008 © 2008 Charles Abzug 35

Entering and Leaving the Critical Region Using "XCHG"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-26.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 36

Race Condition in the "Producer-Consumer Problem"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-27.
© 2008 Pearson Education

19

10-Oct-2008 © 2008 Charles Abzug 37

Use of Semaphores in the "Producer-Consumer Problem"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-28.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 38

Use of mutex_lock and mutex_unlock
to Achieve Mutual Exclusion

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-29.
© 2008 Pearson Education

20

10-Oct-2008 © 2008 Charles Abzug 39

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-30.
© 2008 Pearson Education

POSIX Threads: Procedure Calls for Mutual Exclusion

10-Oct-2008 © 2008 Charles Abzug 40

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-31.
© 2008 Pearson Education

POSIX Threads: Procedure Calls Pertaining to
Condition Variables

21

10-Oct-2008 © 2008 Charles Abzug 41

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-32a.
© 2008 Pearson Education

POSIX Threads: Use of Mutexes and Condition
Variables to Solve the Producer-Consumer Problem

10-Oct-2008 © 2008 Charles Abzug 42

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-32b.
© 2008 Pearson Education

POSIX Threads: Use of Mutexes and Condition
Variables to Solve the Producer-Consumer Problem

22

10-Oct-2008 © 2008 Charles Abzug 43

Use of the Monitor, a Programming-Language Construct,
to Achieve Mutual Exclusion

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-33.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 44

Use of a Monitor to Effect Mutual Exclusion
in the "Producer-Consumer Problem"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-34.
© 2008 Pearson Education

23

10-Oct-2008 © 2008 Charles Abzug 45

The "Producer-Consumer Problem: Solution in Java (1)

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-35"a".
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 46

The "Producer-Consumer Problem: Solution in Java (2)

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-35"b".
© 2008 Pearson Education

24

10-Oct-2008 © 2008 Charles Abzug 47

Message-Passing Used to Solve
the "Producer-Consumer Problem:

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-36.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 48

Use of a Barrier to Enforce
the Synchronization of Multiple Processes

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-37.
© 2008 Pearson Education

Last process has
reached the barrier.
All processes may
now pass through.

All processes are
approaching the barrier.
None has yet reached it.

Several processes have
reached the barrier
and are waiting until

all are present.

25

10-Oct-2008 © 2008 Charles Abzug 49

CPU-Bound and I/O-Bound Processes

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-38.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 50

Goals of the Scheduling Algorithm:
Dependent upon the Computing Environment

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-39.
© 2008 Pearson Education

26

10-Oct-2008 © 2008 Charles Abzug 51

Long-Term (Admission) Scheduler, Medium-Term
(Memory) Scheduler, and Short-Term (CPU) Scheduler

NOTE: This figure did not
come from our course text.

10-Oct-2008 © 2008 Charles Abzug 52

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

27

10-Oct-2008 © 2008 Charles Abzug 53

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

10-Oct-2008 © 2008 Charles Abzug 54

Effectiveness of "Shortest-Job First" Scheduling

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-40.
© 2008 Pearson Education

Jobs run in order of arrival:
First-Come-First-Served (FCFS)

Shortest Jobs run First (SJF)

28

10-Oct-2008 © 2008 Charles Abzug 55

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

10-Oct-2008 © 2008 Charles Abzug 56

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

29

10-Oct-2008 © 2008 Charles Abzug 57

Round-Robin Scheduling

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-41.
© 2008 Pearson Education

Job 'B' gets the processor:

Job 'B' uses up its quantum:

10-Oct-2008 © 2008 Charles Abzug 58

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

30

10-Oct-2008 © 2008 Charles Abzug 59

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,

10-Oct-2008 © 2008 Charles Abzug 60

Priority-Based Scheduling

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-42.
© 2008 Pearson Education

31

10-Oct-2008 © 2008 Charles Abzug 61

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

10-Oct-2008 © 2008 Charles Abzug 62

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

8. "Guaranteed" Scheduling (better name: "Equitable" Scheduling); Interactive,

32

10-Oct-2008 © 2008 Charles Abzug 63

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

8. "Guaranteed" Scheduling (better name: "Equitable" Scheduling); Interactive,
PREEMPTIVE

9. Lottery Scheduling (with Time Quantum): Interactive , PREEMPTIVE

10-Oct-2008 © 2008 Charles Abzug 64

CPU-Scheduling Algorithms
1. First-Come-First-Served (FCFS): Batch Environment, NON-Preemptive

2. Shortest Job First (SJF): Batch Environment, NON-Preemptive

3. Shortest Remaining Time Next (SRT): Batch Environment, PREEMPTIVE

4. Round-Robin Scheduling (with Time Quantum): Interactive, PREEMPTIVE

5. Priority Scheduling (with Time Quantum): Interactive, PREEMPTIVE

6. Priority Scheduling with Multiple Queues (with Time Quantum): Interactive,
PREEMPTIVE

7. Shortest Process Next: Interactive, can be PREEMPTIVE or NON-Preemptive

8. "Guaranteed" Scheduling (better name: "Equitable" Scheduling); Interactive,
PREEMPTIVE

9. Lottery Scheduling (with Time Quantum): Interactive , PREEMPTIVE

10. Fair-Share Scheduling (with Time Quantum): Interactive, PREEMPTIVE

33

10-Oct-2008 © 2008 Charles Abzug 65

Scheduling of User-Level Threads

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-43a.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 66

Scheduling of Kernel-Level Threads

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-43b.
© 2008 Pearson Education

34

10-Oct-2008 © 2008 Charles Abzug 67

The "Dining Philosophers Problem"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-44.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 68

Deadlock or Starvation
in the "Dining Philosophers Problem"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-45.
© 2008 Pearson Education

35

10-Oct-2008 © 2008 Charles Abzug 69

Use of Semaphores to Solve
the "Dining Philosophers Problem" (1)

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-46a.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 70

Use of Semaphores to Solve
the "Dining Philosophers Problem" (2)

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-46b.
© 2008 Pearson Education

36

10-Oct-2008 © 2008 Charles Abzug 71

Use of Semaphores to Solve
the "Readers & Writers Problem"

Tanenbaum (2008). Modern
Operating Systems. 3rd Edition.

Figure 2-47.
© 2008 Pearson Education

10-Oct-2008 © 2008 Charles Abzug 72

END

