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1. In Chapter 6 of Bebop Bytes Back, various logic gates are described, each of which has either one (NOT, Buffer) or two (AND, OR, NAND, NOR, XOR, XNOR) inputs.  For each of the two-input gates, how would you develop and extend the Truth Table if the number of inputs to each gate were extended from two to three, four, five, etc.?  Note that this is a very straightforward issue for some logic gates, but a difficult one for others.

Answer:  Consider first the AND, OR, NAND, and NOR gates, all extended to four inputs.  
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Summary of AND Gate Operation:  For a multi-input AND gate, the output is 0 for all combinations of input, except that the output is 1 when all inputs are 1.

4-Input OR Gate
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Summary of OR Gate Operation:  For a multi-input OR gate, the output is 1 for all combinations of input , except that the output is 0 when all inputs are 0.

4-Input NAND Gate
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Summary of NAND Gate Operation:  For a multi-input NAND gate, the output is 1 for all combinations of input, except that the output is 0 when all inputs are 1.

4-Input NOR Gate
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Summary of NOR Gate Operation:  For a multi-input NOR gate, the output is 0 for all combinations of input , except that the output is 1 when all inputs are 0.

Now, consider the case for XOR gates.  A 2-input XOR operates as follows:

2-Input XOR Gate
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Next, extend this concept by feeding the output of this gate into one input line of a second XOR gate, and using the other input of the second XOR gate as the third input:

2-Input XOR Gate
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3-Input XOR Gate
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3-Input XOR Gate

Considering only the three external inputs and only the final output of the second-stage XOR gate:
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If you have any doubts about the correctness of this approach, try feeding the A and C inputs into the first-stage 2-input XOR gate, and then feeding the output of this gate, together with the B input, into the second-stage 2-input XOR gate.  Or, you can try feeding the B and C inputs into the first-stage XOR gate, and then XORing the output of this gate with the A input.  The results are the same in all cases.

Similarly, extending the concept to a 4-input XOR gate by feeding the output from the 3-input gate into another two-input XOR gate, and adding a fourth input to the remaining input terminal of the new 2-input gate, gives the following Truth Table:

4-Input XOR Gate
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Summary of XOR Gate Operation:  The output will be a 1 whenever the number of input lines that are 1 is odd, and will be a 0 otherwise.  NOTE that the function exhibiting this behavior is known as the Odd Function.   

In a similar manner, the XNOR of three or more input lines corresponds to the Even Function.
Please note that the discourse given here regarding XOR and XNOR was inspired by and is logically consistent with the coverage in Mano, M. Morris; & Kime, Charles R. (1997).  Logic and Computer Design Fundamentals.  Upper Saddle River, NJ:  Prentice-Hall, Inc.  TK7888.4.M36 1997;  621.39’2—dc20;  96-26502;  ISBN 0-13-182098-2, pp. 74-78.

2. What is the precise relationship between the number of address lines that are available to specify a memory address and the number of memory locations in the computer?  This question is rather more complicated than it might at first appear:  does every possible address have to reflect a physical memory location?  Take a careful look at the memory map in Figure 2.23 of Bebop Bytes Back.  Also, consider the reverse issue:  If the number of memory locations is specified, how do you calculate the number of address lines needed?

Answer:  For  n  address lines, the maximum number of memory locations that can be addressed is 2n.  No, every possible address does not have to reflect an actual physical location.  For example, in the Beboputer, addresses $4040 through $4FFF are not used.  Considering the question from the opposite perspective, if it is required to access  N  memory locations, then there must be at least  log2N  address lines.  Why “at least”?  Because the number of address lines must be an integer, whereas  log2N  is not necessarily an integer.  The mathematically correct expression for the number of address lines is:  (log2N(,  where the symbols  ( (  designate a quantity  known as the ceiling function,  that is, the smallest integer equal to or greater than the value enclosed by the symbols.  Thus, if we need to represent  128 addresses (i.e., N  = 128), then we need precisely seven address lines (7 = log2128).  However, if  N  = 129 or 130 or any other value up to and including 256, then eight address lines are necessary.  For  N  =  257 or 258 or any other value up to and including 512, it is necessary to have nine address lines.

3. In Chapter 3 of Bebop Bytes Back, the instruction length for a single “Beboputer” instruction is described as being one, two, or three bytes.  We shall come back to the issue of total instruction length a little later in the course, when we take up the issue of addressing modes.  But for now, focus in on the issue of opcode length.  The opcode for the “Beboputer” is always one byte.  How many different opcodes can be represented in one byte?  For the “Beboputer”, one byte is more than ample, because it has a simple instruction set and just a few addressing modes (don’t worry;  we haven’t yet gotten to the details of addressing modes, but we will).  There are, however, machines that have over 300 different instructions, which is well beyond the number that can be represented in just one byte.  If you were a computer designer, how would you handle that little problem?  Think hard about the answer:  does it have to be “one size fits all”?

Answer:  Restricting the opcode length to one byte allows only 256 different opcodes to be used.  This is just fine for the Beboputer, where altogether only 79 different combinations of operations and addressing modes need to be represented.  However, this number (256) would be totally inadequate for a machine of greater capability.  There are several alternatives available to the Computer Engineer to deal with this problem.  One possible approach is to just increase the length of all opcodes to a uniformly larger size (“one size fits all”), for example, 2 bytes.  This would allow  216  = 64k  different opcodes, which would probably meet all reasonable needs for operations and addressing modes.  A possible alternative would be to reserve 255 of the 256 possible one-byte opcodes for the most frequently used instruction-addressing mode combinations.  One specific one-byte code, for example, $FF, would need to be set aside.  This code would indicate that the current instruction/addressing mode is a member of a less-frequently-used set, of which all 255 possible values are represented in a second byte.  This provides a grand total of 510 instruction-addressing mode combinations.  If this is not enough, then once more the value $FF can be used to signify that the third byte indicates which of a further 255 operation-addressing mode combinations is referred to.  And so on for as long as necessary.
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