XOBERON OPERATING SYSTEM

CS-550-1

Fall 2005

CLAUDIA MARIN
TABLE OF CONTENTS:
21.
OVERVIEW

32.
REAL TIME OPERATING SYSTEMS

53.
MEMORY MANAGEMENT

61.1
Heap management

71.2
Dynamic linking and loading

71.3
Driver support

74.
CPU SCHEDULING

8Overhead Scheduling:

95.
MUTUAL EXCLUSION AND SYNCRONIZATION

96.
CONCLUSIONS

117.
REFERENCES

1. OVERVIEW

This paper describes the real-time operating system XOberon, developed at the Institute of Robotics, Swiss Federal Institute of Technology, Zurich. XOberon is based on the Oberon Operating System and it is written in Oberon 2 object oriented programming language and runs natively on Motorola VME boards based on Motorola MC68040 and PowerPC architectures.
The goal behind the design of this operating system was to provide a rapid application development tool to facilitate the programming of real time applications for embedded systems. The final result of the XOberon project is an operating system that is safe and reliable, well suited for developing applications to manipulate mechatronic products. These products require an operating system that can perform in a real time environment and can guarantee the execution of certain procedures in a given time and at the same time be reliable so that catastrophic events will be avoided.
The interface of the XOberon operating system is object oriented, clear and easy to use. The framework provides high level abstractions for most of the real-time programming problems. XOberon solves the majority of the usual real-time issues by implementing a deadline driven schedule with admission testing. The user must provide the duration and the deadline of a submitted task. The real-time scheduler allocates processor time as specified by the duration/deadline ratio. If the sum of all these ratios remains under 1.0, the scheduler accepts the task, otherwise it will be rejected.
Mostly used in robotics, XOberon is driving applications in PowerPC implementations such as:
· Hexaglide: a milling machine that is used to cut out precise metal shapes. The robot is composed of 6 bars (6DOF parallel mechanism) attached to linear direct drive motors.
· Robojet: a hydraulically activated manipulator used in tunneling construction work. It uses jet as its tool to spray liquid concrete on the walls of new tunnels. The robot is controlled by a joystick with 6 degrees of freedom and a keypad.
· Mobile Post System: a mobile robot used for autonomous mail distribution.

· Others: balancing pendulum robot, ping-pong playing robot and many others.

The XOberon operating system require minimal hardware resources, the newest version was designed to run only on the PowerPC architecture. The resources needed are limited to 1MB of ROM and 1.5 MB of RAM on the target machine. The complete XOberon system consists of:
· a host machine that runs the development environment for applications

· a target machine (PowerPC and XOberon OS)
· an Ethernet connection between the two machines

New features are to be added for future releases of XOberon. Some of them are: a real time incremental garbage collector, off-line execution time profiling, ActiveX visualization tools and Java support. These features will improve and extend the usability of the XOberon in other applications and areas outside of the mechatronic and robotic fields.
2. REAL TIME OPERATING SYSTEMS

Real time operating systems have the purpose of producing correct results under a specified deadline. The correctness in computation of such a system depends on both the result obtained and the time in which it was obtained.

Hard real-time operating systems are systems that have to meet the deadlines and failing to doing so will result in catastrophic results. Examples: avionics, medical robots, nuclear plants and so on. If any of these systems fail to meet the deadline assigned for a certain task, the result of the failure can be catastrophic, resulting in loss of human lives.

The "kernel" of a real-time operating system ("RTOS") provides an "abstraction layer" that hides from application software the hardware details of the processor upon which the application software will run as shown in the following figure:

A real time application can be looked at as a set of cooperating tasks that can be classified according to the deadline requirements:

· Hard real-time tasks: the execution and result is critical for the entire system.

· Non real-time tasks: the execution is not critical for the system (maintenance tasks).

Tasks can also be classified according to their time of execution as follows:

· Periodic tasks – enter execution state at regular interval of time.

· Aperiodic tasks – their execution cannot be anticipated and is determined by internal or external events (usually non real-time tasks).
· Sporadic tasks – deal with the exceptions that may occur (system failures).
There are five main categories of services that the real time operating system kernel provides to the application software as shown in the following figure:

[image: image1]
The most important concern of a real time operating system is that of being predictable and to guarantee that the execution of each task meets the time requirements for that task as well as the correctness of the result obtained.
In designing a real time operating system, two paradigms have to be considered in order to obtain a reliable system:

· Event-Triggered (ET)

· Time-Triggered (TT)

Any real-time operating system has to meet certain requirements from different point of views such as user point of view, research, education and applications. Each of these brings its own criteria that have to be met by a real time operating system and usually these requirements and criteria are very different. From a user point of view, a real time operating system has to meet certain functionality requirements, the user expects among others, the operating system to be clear and easy to use. The requirements from the research perspective usually have to do with flexibility and as few functional constraints as possible. As examples can be mentioned system scalability, dynamic programming, target-to-target communication, multi modular user interfaces.

From the education point of view, an operating system has to conform to the requirements specific to the academic environment so that students can benefit from studying such systems. All of these wouldn’t be possible in the academic world unless these systems are easy to use, have man-machine interfaces, code coherence and fast edit-compile-run cycles.
Last but not least, the requirements coming from the applications that run under these systems have to be met in order for the entire system to perform well in a real time environment. Operating systems and software applications for real time systems depend on each other and the address especially safety and economic issues as well as real time capabilities when performing together. Also in this class of requirements dynamics and speed as well as long term reliability and ease of maintenance are important criteria that have to be met.

XOberon operating system brings something different to the well known concepts like interrupt, priority driven scheduling. It introduces new paradigms to the real time operating systems such as the deadline-driven scheduling, automatic storage reclamation, dynamic linking and loading, memory protection and off line/ on line duration computation.
3. MEMORY MANAGEMENT

The incorrect use of the available physical memory can result in serious reliability and functionality problems especially in real time operating systems. Apart from the fact that real time OS have to be predictable, the way the physical memory is managed is a critical point to be addressed when designing such an operating system. Some of the existing systems like UNIX based, implement memory protection schemes to solve the problem of memory management. These schemes consist basically of using separate address spaces for running programs, allowing them to communicate with each other through inter-processes communications signals. In this situation, if a memory related fault occurs in an application, the application is shut down without interfering with the operating system or with other applications running at the same time. However, this approach has some major disadvantages which are not tolerable and cannot be accepted on real time operating systems.
A different approach in dealing with memory management was used when designing XOberon operating system. The memory related errors that may occur during the execution of the applications that run on XOberon operating system are solved more efficiently during run-time by using memory paging technique on the PowerPC architecture.
XOberon uses paging in dealing with memory-related errors, dividing the physical memory into pages and mapping it page by page into the virtual address space of 232 bytes. The paging policy used by XOberon consists in reserving virtual blocks to the system heap, module loader, stacks pool, memory mapped input/output and DMA. Each of these blocks are managed differently based on its characteristics and is tuned for optimal performance. Many of the memory related problems are now solved by this memory management scheme, bringing reliability and more functionality to the system. The nil-checks are resolved at run time, the stack overflow (if any) can be trapped safely without compiler intervention or run time overhead and at the same time allowing dynamic growth for a better memory utilization.
The advantage of this scheme increases the system speed by tuning the cache behavior when dealing with different blocks of memory.

1.1 Heap management

The area of memory where the objects whose lifetime is not determined by their scope (dynamically allocated) reside is called the heap. The management of the heap memory is usually done by the programmers when coding the application. This involves calling a function, method or procedure in order to free the heap memory. The disadvantages of this procedure are that programmers cannot know before hand the lifetime of an object or data structure and also a misplacement of a memory free procedure can cause run time errors, memory leaks and dangling pointers.
The real time systems cannot afford such errors therefore a solution for this problem is to introduce a Garbage Collector that manages the reclamation of data no longer required by running programs. XOberon implements an interruptible Mark-And-Sweep algorithm to ensure that the high priority tasks are guaranteed to be completed in the given amount of time. The Mark and Sweep Algorithm manage the collaboration between the Garbage Collector and the running tasks.
Other approaches were used in designing other operating systems such as Pointer Reversal Algorithm which is memory efficient but cannot be used in a garbage collector that can be preempted by other processes and also can cause they system stack to overflow.

XOberon improves memory utilization and performance by using an auxiliary stack to record addresses of the heap objects to allow the garbage collector to be effective even in faulty conditions and at the same time to provide adequate performance. The garbage collector runs as a non real time task and its priority varies according to the availability of the memory. If less memory becomes available (more memory is used), the priority of the garbage collector task increases in order for it to be able to run and free the heap memory. In this way, a critical problem was solved in an efficient way, adding high reliability and good performance to the system, as well as minimizing the run time risks and increasing the safety.
1.2 Dynamic linking and loading

Oberon programs are separately compiled modules that are handled by the memory manager. The integrity of the module is checked during compile time as well as during linking time and it can be safely removed from the system when a fault occurs as long as no other module is importing it. The memory manager also traps abnormal behaving tasks and calls an exception handler.

The dynamic linking and loading of the modules is provided by the module loader residing on the target machine. It consists of small modules (32 kilobytes) which handle the checking of version consistency and the dynamic linking of the code that is transmitted from the host machine.
1.3 Driver support
XOberon operating system implements a polling solution over plain interrupt handling when it deals with driver software. Although the interrupt handling has its own advantages, the pooling solution allows for guaranteed response time and is also easier to write and maintain. The diver software consists of published interfaces to an object-oriented data base. The interface allows on-the-fly configuration of the hardware components, therefore a change in the hardware system will require only to reference driver objects by name in the data base, without requiring recompilation or modification of the application.

4. CPU SCHEDULING

The designs goals of the XOberon operating system concerning the CPU scheduling were simplicity and safety. The scheduling policy adopted by XOberon is efficient, relatively easy and has eliminated the problem of hard maintainability and portability of a real time operating system.
In the scheduling process, XOberon system is dividing the processes into:

· real-time processes ,referred to as processes or tasks

· non real-time processes, referred to as threads

XOberon scheduler uses the shortest-deadline first scheduling algorithm in managing the real-time processes. Each process that is managed by the scheduler must provide the following information: a run method, an exception handler, duration, deadline and period for repetitive processes.

According to the scheduling algorithm, the process with the shortest deadline will be given the highest priority and will be fed to the processor first. This process will run on the processor until it completes its cycle or till another process is characterized by a shorter deadline, in which case that process will be given a higher priority and will be fed to the processor.

The scheduler manages the deadline and the process execution by stopping the processes, saving their register-set and choosing another process from the ready queue to be executed. These steps are repeated every 10 milliseconds or with a 10 kHz frequency. This policy eliminates the use of interrupt vector, thus removing the scheduling process complexity.

The non real-time processes (example: maintenance), do not have a deadline therefore they will be scheduled on the processor only if no real time process is pending for execution. However, the threads also have priority associated with them but that is taken into consideration only when the scheduler is making the schedule decision between threads. The algorithm used by the scheduler in such situation is Round Robin or can be chosen by the user and customized, case in which starvation has to be prevented.
Overhead Scheduling:

The overhead scheduling can be a challenging issue sometimes, especially in hard real time operating systems. Also addressing this issue in an efficient manner is a critical step that must be accomplished when designing a real time operating system.
XOberon overhead scheduling policy was implemented taking into consideration the tight relation between the scheduler and the running tasks as well as the processor architecture. The overhead scheduler has been optimized with hand tuned assembler code, cache tuning and stack pre-fetching.

The context-switching is performed on a per-process base and the memory is fine tuned by using paging. The per-process tuning is accomplished by using object-oriented abstractions in order to decide the optimal way in dealing with a certain process. Each process is dealt with separately therefore some processes are context-switched faster than others, according to the characteristics and the state of each process.

Also at the hardware level, on chip performance measurements were performed for a better pipeline tuning. The scheduler performance depends as well on the architecture on which the operating system is implemented. It was noticed that the overhead decreases with better PowerPC implementations.
A relevant example is the Hexaglide milling machine. It runs on a PowerPC604 at 100 MHz and some of the real time tasks are the following among many others (total of 19):

· PD Controller : period 300 microseconds, 130 floating point multiplications operations, 120 floating point addition operations

· Dynamic pre-controller: period 2.5 ms, 1720 floating point multiply, 380 floating point addition operations

· Path planner: period 300 milliseconds, 110 floating point multiplication operations, 100 floating point addition operations.

The hard real time processes load the system up to 89.8 percent and the scheduler has only 5.5 percent overhead to deal with. This performance opens new opportunities for simpler, faster and safer systems for real time use.
5. MUTUAL EXCLUSION AND SYNCRONIZATION

To address the mutual exclusion and synchronization issue, XOberon operating system implements a Synchronizer that provides communication between processes and threads and also handles the mutual exclusion.

By mutual exclusion processes and threads are able to lock sections of code so that only one process can access certain resources or data at a given time. All the locks are carefully monitored by the operating system’s exclusion monitor and they are released when the resource or data become available again.

A process is allowed to require a lock multiple times, due to the reentrant characteristic of the exclusion monitor. In XOberon there is no deadlock. The exclusion monitor has been designed to avoid unbalanced entering and exiting of a process or thread from a mutual exclusive region.

6. CONCLUSIONS
XOberon has proved its reliability and safety through providing successful performance in real time use. It is a robust operating system, implementing multiple features that makes it easy to use and at the same time proves solid real time capabilities.

Real time systems are the backbone of the robotics world and in order for new and more capable robots to be designed there is always a need for reliable real-time operating systems. From medical industry to the aerospace industry, in each field robots are used for real time operations saving time and money.
Whether is implemented on a medical robot used to perform a surgery on a patient or on a mechatronic robot used in industrial operations, a hard real-time operating system must perform impeccable in any conditions. Xoberon is such a system, becoming more and more used in industry. The issue of timing determinism is important in differentiating general-computing operating systems from real-time operating systems. This issue crops up in many parts of operating system kernels, such as task schedulers, dynamic memory allocation and inter task message communication. While general-computing operating systems often offer non-deterministic services in these areas, fully deterministic solutions are needed for real-time and embedded systems. XOberon implements these characteristics in its compact high-performance kernel.
7. REFERENCES

Brega R., Honegger M.(1998). “ Introduction”. URL:

http://www.ifr.mavt.ethz.ch/research/xoberon/introduction.html
Brega R., Honegger M.(1998). “The Hard Real-Time Operating System for Mechatronics ”. URL:
http://www.ifr.mavt.ethz.ch/research/xoberon
 M. Reiser (1991)The Oberon System. User Guide and Programmer's Manual. Addison Wesley, ISBN 0-201-54422-9.

 N. Wirth, J. Gutknecht (1992): Project Oberon. The Design of an Operating System and Compiler. Addison Wesley, , ISBN 0-201-54428-8

 Thomas Kistler, Michael Frantz (2000): Automated data-member layout of heap objects to improve memory-hierarchy performance. ACM Transactions on Programming Languages and Systems. 490 – 505. ACM Press ISSN:0164-0925
 Corti M, BregaR, Gross T., (2000):”Approximation of Worst-Case Execution Time for Preemptive Multitasking Systems”. ACM Transactions on Programming Languages and Systems URL:

http://www.lst.inf.ethz.ch/research/publications/publications/LCTES_2000/LCTES_2000.pdf
APPLICATION SOFTWARE

Real-Time Operating System

HARDWARE

TASK MANAGEMENT

Inter Task Communication and Synchronization

Timers

Device I/O Supervisor

Dynamic Memory Allocation

PAGE
11

