VxWorks
Fall 2005 Final Project

By:

Kenneth White

Josh Houck

Karl Ridgeway

Mike Ripley

Morgan Serene

Section 001

December 6, 2005

Dr Abzug

CS 450: Operating Systems

James Madison University

Table of Contents:

Abstract ………….……………………………………………………Page 3
Overview…………..………………………………………………….Page 3
Processor Modes / Privileged Instructions…..……………Page 4
Threads………………………………………………………………..Page 6
File Management…………………………………………………..Page 7
Bibliography………………………………………………………….Page 10
Abstract
VxWorks is a real-time portable operating system interface developed by Wind River Systems and has been used for numerous applications such as flight simulators. Even though many people have not heard of this operating system, it is very important to learn about its affects on the electronic world and how it provides a reliable multitasking system. In this paper, a reader will read an overview, processor modes, details on threads, and file management of the VxWorks operating system. Since there is a limited supply of books written about this application, our source information came from the internet.
Overview
VxWorks is Wind River’s commercial real-time operating system (RTOS) that runs on top of a current operating system such as UNIX or Windows. Since VxWorks is a RTOS system, it is important for it to run dependably all the time because it could be used in life or death situations. As Wind River Systems describe real-time operating systems by it’s “ability to respond to environmental inputs in a priority-based manner allows a real-time operating system to respond almost instantaneously to events as they occur,” (Wind River Systems). For Example, this RTOS system is used for numerous projects from home use modems to traffic control systems and even NASA Space Exploration Equipment like the Pathfinder.

In the commercial market, Wind River Systems reports that over the past 20 years, VxWorks is the most widely used and thoroughly tested real-time operating system available today and it has been deployed on more than 350 billion devices (Wind River Systems). With its commercial success of VxWorks, Wind Systems also reports that it has helped lower the price of development by estimating the cost per lines of code in migration of a whole new operating system to $3.00 per line of code. This is a relatively low number since the task of migrating can be very expensive when dealing with real-time systems. Still, the code is not that cheap since the government certification cost range from $50.00 to $1000.00 in the real-time system. Another positive aspect of Wind River’s VxWorks is that there has been updates and six releases on the operating system to correct any problems. Also, VxWorks is appealing to the consumer market since it provides three different configurations (described later in section) allowing the customer to choose which version is best for their situation.
As mentioned above, VxWorks currently offers three different configurations. A key feature of these configurations is testing and diagnostics that allow dynamic debugging and post-deployment modifications. The first configuration is a self-contained system, which is used for closed, validated systems. This configuration includes features such as real time process partitioning with protection between each individual process and between processes and the kernel, error management, and a development suite for code compiling, analysis, editing, and debugging. The development suite is called Wind River Workbench, which is an integrated, Eclipse-based development suite. Wind River Workbench is very compatible for most of a developer’s needs. This one development suite can develop anything from hardware bring-up to platform and application development. The next configuration of VxWorks is for networked devices. It has the same functionality as the first configuration with additional features such as validated solutions to secure resource availability, IPsec and IKE, SNMP, wireless LAN driver and security protocols, and a firewall. The last configuration is a safety critical system or hard real-time system that meets the highest levels of safety and security requirements, as mandated by the current law. It offers complete ARINC 653-1 compliance and DO-178B certification evidence. This configuration is in high demand in all industries that call for hard real time systems because of its reputation for being cheap and highly reliable. It is used to implement many cutting edge technologies.

VxWorks is the first commercial, real-time operating system used for a mission to another planet. NASA chose VxWorks to run its Mars Pathfinder missions because of its versatility. Since the Pathfinder would need to figure landing procedures, collect data, communicate with earth, perform maintenance, and other various task, VxWorks was a great choice because of its secure multitasking abilities. VxWorks is also very portable which was very useful since development for the Pathfinder project was used on a variety of hosts systems. The portability of VxWorks also contributed to the lowered cost of the project because developers were able to use COTS (commercial off the self software). The dynamic debugging and post-deployment modifications mentioned earlier played a huge role in the Mars Pathfinder missions. An unforeseen error happened after the actual launch and landing of the Pathfinder on Mars, the Pathfinder software was stuck in an error in which it constantly crashed and rebooted. The developers here on earth, were able to use the dynamic debugging and post-deployment to fix the problem and save the mission. Details of this will be discussed later in the paper.

Processor Modes / Privileged Instructions
The design goals of any real-time Operating System will always favor performance over extensibility. When VxWorks was first designed, the programmers obviously favored the concept of having only trusted software running in this high-performance environment. Thus, they originally created a system that only ran in kernel or supervisor mode.

The concept of only running trusted software on a machine is something fairly unique to Real-Time systems. In few other contexts can a programmer really be sure that the system will only be running what is intended to be run on it. “No privilege protection is used, thus there are no call gates. The privilege level is always 0, which is the most privileged level (supervisor mode)” (http://www.eelab.usyd.edu.au/tornado/docs/vxworks/pentium/pentium.html)
Clearing this extra level of indirection allows for much greater flexibility in performance-oriented application development. Since there are no call gates (an interface to a privileged instruction) or protection rings (A set of rules defining access rights to programs and users), a program can be optimized much more than one could in an operating system with heavy restrictions. The rationale for this performance boost is that always running in supervisor or kernel mode allows for more deterministic and much faster context switches than using user mode.

Since this mode of running allows application code to access hardware I/O space directly, every program intended to run on these systems is tested extensively. However, since this type of testing would naturally occur in any real-time system, this concern is already accounted for most of the time.

According to Wind River's website about VxWorks, the newest version of the Operating System now features a “Process-based user-mode application execution environment” and an “extensible user-mode system call interface” (http://www.windriver.com/products/device_technologies/os/vxworks6/). This new extension would provide some limited support for user-mode applications that are less trusted than the applications that were initially designed for a system. However, these would naturally add some overhead, so those performance considerations would naturally have to be taken into account.

A Uniprocessor Framework

VxWorks was designed from the ground up to be a single-CPU Real Time system. Since synchronization code across multiple processors can be a fairly complicated concern to implement in a performance-oriented way, the designers of VxWorks initially conceived of a totally uniprocessor framework. Although some of the architectures VxWorks were initially designed to run on do supports multiprocessing, VxWorks would not take advantage of the extra processors available.

Upgrading to SMP

However, the newer version of VxWorks (version 6) supports a run-time accessory called VxMP, which allows scaling beyond single CPUs. In fact, it even supports multiboard bus-architected designs which share a memory bus. It is a symmetric multi-processing facility, which means that the kernel and other processes run equally across all CPUs. Compatible with VxWorks version 5 or later, this add-on supports shared memory among the processors and an indivisible hardware read-write-modify mechanism to synchronize memory writes across separate boards. Some of the added features include support for up to 20 CPUs to boost performance, binary and counting semaphores to aid in synchronization efforts, shared memory pools and partitions to decrease device accesses, and a high-performance communications mechanism. (http://www.kohala.com/start/papers.others/pathfinder.html)
Although design for multiprocessing systems can be fairly complex, the VxMP package enables applications to scale to this level with “little or no code modification.” Therefore, the same reliable applications that were proven on the single-CPU version of VxWorks could be scaled to a higher number of processors and, therefore, gain significant performance increases.

This performance- and reliability-driven design pattern is typical of a Real-Time Operating System. One can see these design considerations taken into account when one considers the choice of only running trusted software on a system and the choice of building a proven single-CPU framework and then later adding on support for additional processors.

Threads
When talking about single or multi-threaded per process applications VxWorks falls under the category of a multi-threaded or multitasking application. Multitasking is a method by which multiple tasks; also known as processes, share common processing resources such as a CPU. “In the case of a computer with a single CPU, only one task is said to be running at any point in time, meaning that the CPU is actively executing instructions for that task” (http://www.eelab.usyd.edu.au/tornado/docs/vxworks/pentium/pentium.html) With multitasking the problem is how to determine which process gets the CPU next when another task is waiting to be run, this is solved through scheduling. When the schedule takes a task off the CPU and places another onto the CPU this is called a context switch.

With VxWorks the type of scheduler the system uses is called preemptive priority scheduling. This means that every thread is given a priority number and in this case the lower the priority the number the greater priority it has over threads with larger numbers. After threads are given their priority number the scheduler now can determine which task will take CPU cycles while the others are held. The way it determines this is that the thread with the lowest priority number will take precedence. But since this system is preemptive priority it means that when ever a thread comes onto the stack to be executed and has a lower priority number then the current thread being executed, the current thread will be stopped and the new thread will be placed onto the CPU. But this can also cause problems if a low priority task wants to run forever and will not yield the CPU, so all other tasks will not be executed, but this can be bypassed for so to prevent this sort of situation from occurring.

An example of VxWorks being used was on the Mars Pathfinder mission. “Tasks on the Pathfinder spacecraft were executed as threads with priorities that were assigned in the usual manner reflecting the relative urgency of these tasks” (Winkipedia). On the Pathfinder it contained what is called an “information bus”, this is a place of memory where information was stored and passed to different components on the spacecraft. A bus management task ran with high priority meaning it got the CPU when it came onto the stack; this was to be able to move certain types of data in and out of the information bus.

The information bus was not the only type of thread being processed at the time either. The Pathfinder was also gathering data on meteorological events that ran in low priority threads, which also used the information bus to move its data. When the meteorological data was trying to be published and an interrupt occurred so the bus management task could transfer information, the meteorological data would be held and have to give up its resources so the bus management could complete its task first. This happened because the bus management tasked had a higher priority (lower priority number) so when it came time for it to be executed the task on the CPU had a lower priority (higher priority number) it had to yield to the bus management task.

“Most of the time this combination worked fine. However, very infrequently it was possible for an interrupt to occur that caused the (medium priority) communications task to be scheduled during the short interval while the (high priority) information bus thread was blocked waiting for the (low priority) meteorological data thread. In this case, the long-running communications task, having higher priority than the meteorological task, would prevent it from running, consequently preventing the blocked information bus task from running. After some time had passed, a watchdog timer would go off, notice that the data bus task had not been executed for some time, conclude that something had
gone drastically wrong, and initiate a total system reset”(http://www.kohala.com/start/papers.others/pathfinder.html).
File Management
Since VxWorks is a hard real-time system, operation from a magnetic disk is not typical. In some configurations, VxWorks will be loaded from a disk at boot, and can write the results of its operation back to disk as it runs. Hard real-time requires that all operations run in a fixed amount of time, and dynamic memory allocation does not meet this requirement. While VxWorks provides the malloc()/free() system calls, by convention, they are not used after program initiation. In order to maintain a hard real-time system, all memory allocation must be done at program initiation to prevent delays during program execution, and also to prevent memory fragmentation, which can degrade a hard real-time system to soft real-time. While this may sound awkward, consider that in many embedded systems, jobs are not executed and terminated regularly. The system is initialized once at power-on, and runs until power-off. When the system powers on, all programs and subsystems are initialized. Once the green light is given, it is assumed that the system can function in hard real-time with no interruptions, delays, or exceptions.

It is important to mention the memory allocation system in tandem with the file management system, since the file table is held in RAM. A library is available for VxWorks that enables access to a DOS FAT file system. It was this library that crippled the Mars Spirit Rover in early 2004. When VxWorks boots, it scans the attached disk to build the file table in RAM. This table is not written to disk at power-off, it is regenerated on each boot. As the file table expands in RAM, additional allocation requests are made to the system memory manager for 256 KB blocks. This behavior is consistent with the requirements of a hard real-time system. Memory allocations are only being made as the system is initialized. This, however, is where the consistency ends. The DOS library has two configuration parameters that become relevant here. One sets the maximum RAM allocation and the other sets the failure behavior when additional memory cannot be allocated. Maximum RAM allocation is fairly self-evident, but the failure behavior leaves a bit to be explored. One value instructs the library to block until memory can be allocated, which, if the conventions of hard real-time are being followed, is never, while the other forces the library to return to the calling program immediately if there is a failure in the driver. NASA Jet Propulsion Laboratory engineers discovered too late in the Spirit rover experiment that the FAT library had been configured to allow unlimited RAM expansion, and to block indefinitely while waiting for RAM. Many real-time systems, the rovers not excluded, feature a hardware watch dog timer onboard. The timer verifies that critical components of the operating system are still functioning. If they fail to respond, the timer will power cycle the system. Fortunately, the watch dog timer on the Spirit rover was able to monitor more than just kernel responsiveness, but also subsystem response. When instrumentation on the rover blocked on a data write, which in turn stalled due to memory allocation issues, the timer exceeded its programmed threshold and rebooted the system.

Like many file systems, the FAT system in VxWorks does not actually erase a file from the disk when instructed to delete it by an application. The file is marked as deleted in the allocation table, and the space is considered eligible for reuse during future allocation requests. The VxWorks FAT library scans the disk upon boot and rebuilds the file table from scratch. During this process, deleted files are entered into the RAM copy of the table, so that the RAM copy accurately reflects the contents of the disk. Thus, the size of the RAM based table is dependent on the maximum number of files that ever existed, not the current number. This, coupled with the poor choice of configuration options mentioned above, and a limited amount of system memory is what eventually crippled the Martian rover Spirit. Fortunately, the rover could be commanded into a degraded mode in which it did not attempt to initialize the attached disks or instruments. NASA JPL engineers were able to upload low-level commands to delete expired data (old VxWorks images and rover telemetry) and erase the deleted files. Once the files were actually erased, the FAT library no longer attempted to load them into the RAM-based file table. Once the file table was returned to a usable size, the rover was able to reboot into a fully functional mode and resume data collection.

VxWorks includes semaphores to protect against concurrent access to areas of shared memory. In 1990, Dr. Lui Sha, Dr. Ragunathan Rajkumar, and Dr. John Lehoczky, of Carnegie Mellon University, IBM Thomas Jefferson Lab, and Carnegie Mellon respectively, published a paper on a potential pitfall to using simple semaphores to lock shared variables. Suppose a program has three jobs, J1, J2, J3 of decreasing priority, and a semaphore S. If job J3 locks semaphore S, but fails to complete its critical section before job J1 is swapped onto the processor, J1 can be blocked by J3 if J1 requests semaphore S. J1 can be further delayed if J2 requests processor time, which can prevent J3 from running until the end of its critical section. This situation is known as priority inversion, since the task priority levels have been inverted. The indeterminacy of this situation can be fatal in a hard real-time environment. In fact, it was the deadlock from this situation that stalled out the first generation of Martian rovers. These systems were guarded by watch dog timers, much like today’s generation of rovers, so they were able to recover from the deadlock. In their paper, Sha, Rajkumar, and Lehoczky proposed a simple algorithm for preventing this situation. They suggest that any application that acquires a lock via semaphore be promoted to the highest priority job on the system until the critical section has exited. This solution is referred to as basic priority inheritance. VxWorks has a configurable option to enable priority inheritance, but it causes some level of overhead with the need to check semaphore usage and reorder the task priority list. Unfortunately, the first Martian rover was flown with priority inheritance disabled, but it was later enabled when the system was consistently rebooted by the watch dog timer.
Conclusion

In conclusion, VxWorks is a very in demand real-time operating system used in numerous important situations, for instance, NASA’s Pathfinder. The reliability of this operating system is created by its attributes, such as the processor mode and privilege Instructions, threads and file management. With the operating system framework composed the way that VxWorks is, it is completely understandable why Wind River Systems reports that VxWorks is the most widely used and thoroughly test real-time system available today.

Bibliography
Borkhuis, J.A.. “VxWorks / Tornado II FAQ.” 2000. http://www.xs4all.nl/~borkhuis/vxworks/vxworks.html

"Customer Success Story: JPL / Pathfinder." Wind River. 5/17/2004 2004. Internet Archive. http://web.archive.org/web/20040517230709/http://cdn.windriver.com/success/jpl_pathfinder.html

Gordon, John. “VxWorks Cookbook the Kernel.” 06 July 2003 http://www.bluedonkey.org/cgi-bin/twiki/bin/view/Books/VxWorksCookbookTheKernel
Jones, Mike. "What really happened on Mars?" Microsoft Research. 12/15/1997 1997 http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html
Marik, Tariq. "Thinking on Mars: The Brains of NASA's Red Planet Rovers." Space.com. 1/28/2004 2004 http://www.space.com/businesstechnology/technology/mer_computer_040128.html
“Pathfinder debugging” http://www.kohala.com/start/papers.others/pathfinder.html

Rajkumar, L. Sha, R., and Lehoczky, J.P.. "Priority Inheritance Protocols: An Approach to Real-Time Synchronization." IEEE Transactions on Computers. 9/1990 1990. IEEE Computer Society. http://csdl.computer.org/dl/trans/tc/1990/09/t1175.pdf
Reeves, Glenn. "Flying VxWorks to Mars." Sam Siewert, University of Colorado. 4/18/2000 2000 http://ece-www.colorado.edu/~siewerts/marspath/jpl/index.htm
Reeves, Glenn and Neilson, Tracy. "The Mars Rover Spirit FLASH Anomaly." NASA Jet Propulsion Laboratory. 2004 http://www.cs.princeton.edu/courses/archive/fall05/cos109/mars.rover.pdf
Thomas ,Lee. “threads, FYI.” 17 Dec 97 http://www.red-bean.com/guile/guile/old/2281.html
Wilson, Ron. "The trouble with Rover is revealed." EETimes. 2/20/2004 2004 http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=18310935
Winkipedia. “Computer Multitasking.” http://en.wikipedia.org/wiki/Computer_multitasking
“VxWorks.” Wind River Systems. http://www.windriver.com/portal/server.pt?space=Opener&control=OpenObject&cached=true&parentname=CommunityPage&parentid=0&in_hi_ClassID=512&in_hi_userid=27106&in_hi_ObjectID=769&in_hi_OpenerMode=2&
“VxWorks for Pentium: Architecture Supplement” http://www.eelab.usyd.edu.au/tornado/docs/vxworks/pentium/pentium.html
PAGE
VxWorks 3

