IBM’s VM Operating System

Keith Starling

CS-550-1: Operating Systems

Fall 2005

This work complies with the JMU Honor Code

__

Table of Contents
2Overview

2History

2Components

4Processor Capabilities

4Modes and Instruction Privileges

4Multiprocessing

5Memory Model and Implementation

6CPU Scheduling

8Conclusion

9Bibliography

10Glossary

Overview
History

The Virtual Machine (VM) operating system was designed by International Business Machines (IBM) and originally released August 2, 1972 as VM/370 (IBM: VM History and Heritage). Since its inception, the VM operating system has been designed to work in mainframe environments. Originally created for the IBM S/370 system, VM has been updated to run on IBM’s zSeries Linux mainframes built on the z/Architecture. At the time, VM was a revolutionary operating system because it managed to succeed where other systems had failed: the effective use of virtual machines (IBM: About the z/VM Operating System).
When a user begins a session in VM, they are assigned a new virtual machine or, as they are referred to in VM documentation, guest or image. This virtual machine may be running VM, or it may be running another operating system such as Linux, Conversational Monitor System (CMS), or z/OS. These virtual machines can interact with each other through the use of virtual Local Area Networks (LANs), with each guest having access to a virtual Network Interface Controller (NIC), or through shared storage. This ability to run operating systems in a virtual machine, complete with hardware abstraction, made VM an ideal operating system (OS) for development platforms and OS migrations or updates (International Business Machines [IBM], September 2004)
This same ability also made VM a commercial success. By running multiple guests on a single system, corporations can host an entire server farm on one mainframe. This also allowed corporations to continue running their legacy software while upgrading to a newer OS without having to buy a new mainframe. While the initial release of VM did not have built-in support for Transmission Control Protocol/Internet Protocol (TCP/IP), this was available as an addition soon thereafter when networks became more commonplace (Starling Jr., Bob. Personal interview. November 19, 2005).
On October 3, 2000 IBM released the updated version of VM, z/VM, for the z/Architecture mainframes. Aimed at web-enabled businesses, z/VM generally ships with Linux in a multi-processor system. In this configuration, different guests can be running different instances of a web server or database servers. Combined with the hardware encryption technologies included on the z/Architecture servers, this makes round-robin web serving much more space efficient and makes upgrades to software easier as these upgrades can be tested on the system while maintaining functional virtual machines.
Components

The most important component of VM is the Control Program (CP). The Control Program is responsible for controlling device mapping of real, shared, or simulated devices to each guest. Due to this responsibility, CP controls the dispatching of guest processes to real processors, the representation of storage to the individual guests, and communication between guests. Apart from CP, the only components that are present in all configurations are the individual operating systems running on each virtual machine. This relationship is demonstrated in Figure 1, where z/VM is running multiple guests, all running Linux and sharing disks, a tape drive, and a printer through CP.
[image: image1.emf]
Figure 1 (IBM, September 2004)

Processor Capabilities

Modes and Instruction Privileges
z/VM allows for two processor modes depending on the Problem State bit setting in the Program-Status Word (PSW). Located at bit 15 of the PSW, if this flag is 0, the processor is in the supervisor state, enabling all types of instructions to be executed on the system. If the flag is set to 1, the processor in the problem state and allows unprivileged instructions to execute and certain semiprivileged instructions if authorization conditions are met. Typical instructions that do not have the potential to do any harm to the system integrity are unprivileged instructions. The thirty-two instructions that control program flow or memory use are semiprivileged instructions and there is one privileged instruction, LOAD ADDRESS SPACE PARAMETERS, which configures storage space for use by a guest.
One of the main restrictions on semiprivileged instructions is that they must be executed with Dynamic Address Translation (DAT) enabled. Dynamic Address Translation is enabled by setting bit 5 in the PSW to 1 and causes logical addresses referenced by guests to be resolved to their appropriate location in real memory. When DAT is disabled, all references are treated as real memory addresses. Other restrictions on particular sets of control instructions are determined by bit settings in the control registers. Each restriction is contained to similar types of instructions. Extraction-Authority Control is enabled by setting bit 36 of control register 0; the PSW-Key mask is located in bits 32-47 of control register 3 and controls which entry points the application can use; the Secondary-Space Control is enabled by setting bit 37 of control register 0; Address-Space-Number-Translation Control is enabled by setting bit 44 of control register 14. Should an application attempt to execute an instruction that it is not permitted to execute, an exception will be recognized by the operating system (IBM, May 2004).
Multiprocessing

Multiprocessing is supported on multiple levels in z/VM. While the operating system itself will run on multiple processors (a commercial requirement in the mainframe environment) z/VM can also allocate up to 64 virtual Central Processing Units (CPUs) to each image. Dispatching of the jobs assigned to these virtual CPUs to real CPUs is done by CP (IBM, September 2004).

Although virtual machines generally execute in a Symmetric Multi-Processing (SMP) configuration, z/VM itself runs in more of a cluster configuration. Since the operating system runs on proprietary hardware, much of the communication between CPUs can be done at hardware level. CPUs are able to send interrupts if they lose power or encounter a malfunction and processes are simply routed to functioning CPUs until power can be restored or the malfunction corrected (IBM, May 2004).
Memory Model and Implementation

In the z/VM mainframe environment, there are three types of memory that can be used: main storage, expanded storage, and paging space. Main storage is what is conventionally referred to as main memory in a Personal Computer and is where executing programs reside. Expanded storage is located in physical memory, but acts as a rapid paging space and is only addressable as pages. Lastly, paging space is located on the system’s Direct Access Storage Device (DASD), the equivalent of a hard drive in a Personal Computer. Paging space is only accessed when the capacity of main storage and expanded storage is exceeded.

Since guests must run in main storage, z/VM uses on-demand paging to bring the appropriate pages from expanded storage and paging space into main storage. When a page becomes inactive it is eligible to be swapped out, and when a page fault occurs CP attempts to bring the required page into a free page. While z/VM maintains a block of free pages to limit page-outs, if no free page is available inactive pages will be swapped out to enable execution to continue. As shown in Figure 2, paging is much more efficient if expanded storage alone can be used, as paging to or from paging space requires the page to first be loaded into main storage (Geiselhart et al., May 2003)
[image: image2.emf]
Figure 2 (Geiselhart et al., May 2003)
CPU Scheduling

CPU scheduling in z/VM is rather simplistic compared to other production operating systems developed by IBM. This is primarily due to the complicated scheduling algorithms that are being implemented by the operating systems running in the virtual machines; VM simply needs to make sure that the guests get a fair amount of time on the processor. The goal of the scheduler is to keep as many of the virtual machines running concurrently as possible.
To this end, the scheduler uses two time slices, an elapsed time slice and a dispatch, or minor, time slice. For the duration of each elapsed time slice, virtual machines compete according to their priority to run for the duration of their dispatch time slice. When the dispatch time slice for a guest is complete, the scheduler lowers the priority of that guest. Then, when the elapsed time slice is complete, the scheduler removes that guest from the pool of competing virtual machines and attempts to add a ready guest to the pool.
Virtual machines are assigned a classification based on their resource use which is used to determine an initial priority. These classifications are:
· Class 0 – Immediate Processor Access Required

· Class 1 – Interactive Tasks

· Class 2 – Non-Interactive Tasks

· Class 3 – Resource-Intensive Tasks

These classifications are also used to sort the tasks in the three lists used by the scheduler, the dormant list, the eligible list, and the dispatch list. If a task does not have any pending resource requests it is moved to the dormant list. Once a request is made, the task is moved to the eligible list. When sufficient resources exist to handle the request, the task is moved to the dispatch list and assigned a priority that attempts to ensure that resource intensive tasks do not cause starvation for less intensive tasks and that each task receives an appropriate amount of time on the processor. The only exceptions to this order are Class 0 tasks, which bypass the eligible list and move immediately to the dispatch list (See Figure 3 on following page).

Priorities and time slices are calculated based off the classification of the task. Class 1 tasks initially receive an elapsed time slice of 1.2 seconds, though this value will decrease if the number of guests of Class 1 that complete processing increases, and the value will increase if the number of Class 2 guests increases, or if a minimum threshold of Class 1 guests and a maximum threshold of Class 3 guests is reached, the value will increase; however, the elapsed time slice for Class 1 will always be between 50 ms and 16 seconds. All other classifications are assigned elapsed time slices relative to the current time slice for Class 1, with Classes 0, 2, and 3 receiving values 6, 8, and 48 times larger respectively. The dispatch time slice is determined at CP initialization and does not change (Geiselhart et al., May 2003).
[image: image3.emf]
Figure 3 (Geiselhart et al., May 2003)
Conclusion

Through its evolution, VM has maintained a presence in mainframe environments due to the flexibility it provides corporations. Robust, established code combined with a powerful architecture have now given z/VM a solid position as a mainframe OS in contemporary business, augmented by its ability to run Linux on the zSeries IBM systems. While initially used primarily for development and system migration, VM has evolved to become an ideal operating system for large scale clustering in a corporate environment. Rapid communication between virtual machines allows for almost instantaneous TCP/IP network communication and for an entire virtual LAN to exist in one system, which can serve as a router to an external Wide Area Network (WAN). The ability of CP to emulate hardware makes VM a good choice for developing and testing software and operating systems.

Due to the increased computational power of z/VM on a 64-bit architecture compared with the earlier 24- and 32-bit VM systems on the S/390, clustered virtual machines are capable of rapid, complex calculation for business or scientific purposes. In addition, the reliance of VM on a particular architecture designed by the same company that produces the OS allows that architecture to optimize the performance of the operating system. Unfortunately, this reliance on proprietary hardware requires the purchase of proprietary hardware in order to make use of the operating system, and with some of the more powerful mainframes built on this architecture costing about $1,000,000 (WRAL: Local Tech Wire), the affordability begins to be an issue for many companies.
Bibliography

“IBM: About the z/VM Operating System.” URL: http://www.vm.ibm.com/overview/
“IBM: VM History and Heritage References.” URL: http://www.vm.ibm.com/history/
Geiselhart, G., Dupin, L., George, D., van der Heij, R., Langer, J., Norris, G., Robbins, D., Robinson, B., Sansoni, G., Thoss, S. (May 2003). “Linux on IBM eServer zSeries and S/390: Performance Measurement and Tuning, IBM Redbook.” URL: http://www.redbooks.ibm.com/redbooks/pdfs/sg246926.pdf

International Business Machines (May 2004). “z/Architecture Principles of Operation.” URL: http://publibz.boulder.ibm.com/epubs/pdf/dz9zr003.pdf

International Business Machines (September 2004). “Getting Started with Linux on zSeries: Version 5 Release 1.0.” URL: http://publibz.boulder.ibm.com/epubs/pdf/hcsx0b00.pdf
Starling Jr., Robert Keith. Personal Interview. November 19, 2005.
WRAL: Local Tech Wire (July 27, 2005). “Introducing the z9: IBM Unveils $1.2 Billion Successor to Its T-Rex Mainframe.” URL: http://www.localtechwire.com/article.cfm?u=11904
Glossary

CMS – Conversational Monitor System

CP – Control Program

CPU – Central Processing Unit

DASD – Direct Access Storage Device

DAT – Dynamic Address Translation

DPA – Dynamic Paging Area

IBM – International Business Machines

LAN – Local Area Network

NIC – Network Interface Controller

OS – Operating System

PSW – Program-Status Word

SMP – Symmetric Multi-Processing

VM – Virtual Machine

WAN – Wide Area Network
PAGE
8

