Symbian Operating System

CS-550: Operating Systems

Fall 2005

Submitted To,
Prof. Charles Abzug

Presented By,

Himal Prasad Humagain
12/8/05
This work honors the JMU honor code _____________________

 Himal Prasad Humagain

Table of Contents
1. Introduction ……………………………………………………………… 3
2. General Overview …………………………………………………………. 4
3. Processor Modes ………………………………………………………….. 6
4. Memory management …………………………………………………….. 7
5. Processes and Threads ……………………………………………………. 8
6. File management ………………………………………………………….. 9
7. Mutual Exclusion and synchronization ………………………………….. 10
8. Summary …………………………………………………………………… 11
9. Bibliography ………………………………………………………………. 12
1.0 Introduction
This paper presents about the Symbian Operating system from its technical perspective of the analysis of the operating system. The purpose of this paper is to fulfill the course requirement for CS-550, Operating System. It is presented to Prof. Dr. Charles Abzug on Fall-2005.

2.0 General Overview
Symbian is an operating system designed specifically for advanced mobile phones running on ARM processor. Symbian OS combines the power of an integrated applications environment with mobile telephony, bringing advanced data services to the mass market. Symbian OS includes a multi-tasking kernel, integrated telecommunication support (such as GPRS, Bluetooth, SyncML, and ultimately 3G), communications protocols, data management, graphics support, a low-level graphical user interface framework and a variety of application engines.

Symbian OS has a lightweight 32-bit pre-emptive kernel that follows a hybrid design combining characteristics from both micro-kernel and monolithic kernel architectures.

This architecture is called EKA2.

It did advance the state-of-the-art by integrating the power of computing with mobile telephony and bringing advanced data services. It discovered mobile phones to be a platform for deployment of applications and services developed in a wide range of languages and content formats. It has features for music, games, and multimedia. Browsing: full web browser support and WAP stack for mobile browsing. The messaging support it provides are MMS, EMS, SMS, POP3, IMAP4, SMTP, MHTML; standard attachments; fax. The multimedia services are shared access to screen, keyboard, fonts and bitmaps; audio recording and playback, and image related functionality (support common audio and image formats), including API for graphics acceleration, streaming and direct screen access. It supports wide range of communication protocols: including TCP, IP version 4, IP version 6 and WAP, IrDA, Bluetooth, USB.

This Operating system is moving ahead to be the world standard for mobile digital data system, primarily for use in cellular telecom. There are 54 phones that are using Symbian Operating System.

Version of Symbian OS released are v6.1 (2001), v6.2 Q1/2002, V7 2002, V7 2002, v8 2004 and v9 2005. Since its starting it has become the dominant mobile OS and leading the mobile market. According to Gartner analyst Todd Kort, the smartphone market is roughly doubling in size each year.

Symbian OS is not only an operating system but a full software and communications platform. This means more applications are already available for developers. Several application platforms were defined and their usages depend on the mobile phone capability integrating this OS.

2.1 Application platforms:

Series 60 is a UI for mobile phones that are single-handed operated. In addition to voice communication, multimedia messaging, content browsing and application downloading are the main features of this platform.

Series 80 is a UI for devices with larger horizontal screens. It is used in clamshell devices with a keyboard.

UIQ is a customizable pen-based user interface platform for media-rich mobile phones based on Symbian OS.
Symbian OS is also being used in the new Series 90 platform, which is being introduced in the Nokia 7700 phone. With a pen input user interface, a horizontal screen and an optional television tuner, the Nokia 7700 brings mobile multimedia to a new level.

Critiques argue that Symbian OS, as is said, is created to serve mostly the user initiated I/O. But for the always-connected communicating devices, many more interactions and much more I/O is not user initiated. In this situation clients must know:

· Which server provides the service they want?

· IPC requires that permanent sessions between clients and server is maintained.

· Potential for deadlocks due to synchronicity of session creation and teardown if circular connection is formed.

· It is not really suitable for event multicasting.

3.0 Processor modes

The kernel runs in privileged mode and in user-mode. In supervisor mode kernel owns device drivers, implements the scheduling policy, does power management and allocates memory to itself and user-mode (that is, unprivileged) processes. It runs natively on ARM cores. In the Kernel architecture it is the nanokernel, which provides the supervisor-mode threads and their scheduling and synchronization operations. This nanokernel is also the initial handler of all the interrupts.

The kernel implements a message-passing framework for the benefit of user-side servers. The user library is the lowest level user mode code which offers library functions to user-mode code and controlled access to the kernel.
File server which manipulates the files and directories and Window server which controls the screen, keyboard and pointers are the user mode servers.
ARM is 32 bit load store architecture. It has got 37 total registers for seven processor modes. 20 of them are visible 32-bit registers in privileged modes and 17 in user mode.

4.0 Memory management

Symbian uses all hardware supported RAM to a theatrical maximum of 2GBs. Applications share RAM with operating system but has exclusive access to their allocated memory area. All RAM available for OS and applications. Flash and expansion card memory is used for storage. Symbian OS devices use RAM just as it is used on a PC—with all the main memory available for the operating system and applications. Permanent storage is kept in flash memory and expansion cards.

Figure2: Symbian OS Memory Map
Figure source: http://www.devx.com/wireless/Article/17126/0/page/1
As you can see in the figure, the way RAM is allocated allows you more active, main, memory for your Symbian OS applications.

The kernel runs within its own protected address space. Because of this, a programs memory leak or stack over-run can't overwrite the kernel's stack or heap which would cause a system crash. When programs need to dynamically exchange data, it's done by using the Symbian OS' internal client-server architecture, with its minimal resources, message-passing system. A Symbian OS application that allocates dynamic memory on the heap but doesn't release it can lead to poor memory management especially with multiple open applications.

To save the memory Symbian OS is designed for code reusability and shared libraries.

In Symbian OS, you can also use system DLLs, normally located in permanent storage, to be executed in place thus saving main memory space. You must load DLLs stored in expanded memory storage into main memory.

When Symbian OS loads a program, it also loads all the DLLs it calls. If the DLL is already in permanent storage or has already been loaded by another process, the process' threads share the resident copy rather than loading an additional copy. This cuts down the code loaded into main memory to a bare minimum.

5.0 Processes and Threads

Although Symbian OS is designed for event-based time sharing on a single thread, it also supports multitasking and multithreading applications. Only one application at a time can have access to the UI. It has multiple threads per process. The data structure used by Processes and threads are process stacks and process heaps.
Multitasking
Symbian OS is a multitasking operating system with multi-threading support. Every Symbian OS process can have one or more threads. These are co-coordinated by the system scheduler, which allocates thread processor access by prioritized, pre-emptive multitasking.

In smart phones, multitasking is especially valuable since users will frequently want to do such things such as downloading e-mail while talking or looking at a Web site. As 2.5G and 3G network packet data services become more common, multitasking smartphone applications will become a must. Symbian OS also enables you to use inter process and application communications to enable multiple processes and programs to work together.

There is Potential for deadlocks due to synchronicity of session creation and teardown if circular connection is formed. Since the kernel is preemptive we can remove the situation of deadlock.
Symbian OS uses pre-emptive multitasking, which means that every thread is allowed to execute for a limited period of time until the system scheduler passes execution to another thread. The thread with the highest priority being ready to run will be scheduled next. Process boundaries are memory protection boundaries. All user processes have their own memory address spaces and all threads within the same process share the same memory address space. The user process cannot directly write to the address space of another process.

Each thread has its own stack and heap. The heap can be private or shared with another thread. Symbian OS is optimized for single-threaded applications, and the use of active objects is preferred instead of multi-threading.

3.1 Thread Priorities
A thread can be assigned an absolute or relative priority value. Absolute values define the overall priority of a thread, ignoring the priority of a process owning the thread. When using relative priority values, the overall priority of a thread is defined as a priority of the process owning the thread plus the relative priority value.

Every thread can have its own exception handler. An exception handler is called when an exception from a certain category is raised in that thread.

6.0 File management
File access is provided by an Symbian OS server, the file server. It provides local file systems (ROM, RAM and removable media), and an interface to allow dynamically installable file systems, such as those required to communicate with remote disks over a network. The drive, directory and file hierarchy is VFAT, thus making the file system naturally compatible with desktop PCs. File systems and reference media drivers are provided for the following types of media: internal RAM drive,internal NOR Flash, internal NAND Flash, ATA/CF, MultiMediaCard (MMC), Secure Digital (SD) memory card (including both the user and protected areas of these devices).

Main features of file management in Symbian OS:

· File system drivers can be added when required without having to reboot

· Clients can register for notification of file-server events, for example, entries changing in given

· Directory, changing disk or disk space crossing a specified threshold

· Interoperability with other systems, the VFAT filing system (in both FAT16 and FAT32 formats) is used for removable media

· All filing systems guarantee data integrity in the face of unexpected power loss.

There is a new file handling application, File Manager, which makes it possible to browse which makes it possible to browse the structure of internal storage as well as the Memory stick storage space. It can be used for file management operations like Copy, Move, Delete, Rename, View properties Change file attributes, and more. Folders and files can also be managed and opened in appropriate viewers. File Manager provides access to the user part of the file system. System folder is hidden and can't be accessed. You can use it to move image files stored by a digital camera in its custom folder. It is also possible to export pictures directly to DCIM directory from which they can be accessed by other electronic devices using Memory stick cards as storage media.

7.0 Mutual exclusion and synchronization

To protect the critical section Symbian OS use either non-preemptive client/server approach or synchronization objects. Synchronization objects (mutex, semaphore, critical section) are kernel objects that can be accessed through handles. They are used to restrict or block concurrent access to a resource that might be accessed by multiple threads. This kind of resource is called a shared resource.

If there is at least one thread which might write into a shared resource, every thread accessing this resource must use synchronization mechanisms in order to maintain the integrity of the resource.

Synchronization In general has the following steps:

1. Call Wait() of the synchronization object reserved for this resource.

2. Access the shared resource.

3. Call Signal() of the synchronization object reserved for this resource.

7.1 Using Semaphores
Semaphores are used for synchronizing access to shared resources. Semaphore restricts the number of simultaneous accesses of a shared resource up to the semaphore count. The initial value of the semaphore count is given in the constructor. Semaphores can be global or local. A global semaphore has a name and it can be searched and used from another processes also. A local semaphore doesn’t have a name and it can be used only from threads within the same process. Semaphore’s Wait() method decrements the semaphore count and if the count is negative after being decremented, the calling thread is put in a waiting state. Calling the semaphore’s Signal() method increments the semaphore count and if the count was negative before being incremented, the first thread waiting for this semaphore is marked as ready to run.

7.2 Using Mutexes
Mutexes are used for synchronizing exclusive access to shared resources. Like semaphores, mutexes can be global or local. One difference between a semaphore and a mutex is that the initial count of a mutex is always 1. Mutex thus allows at most one simultaneous access to a shared resource. If a thread has called Wait() on a mutex, but not yet Signal(), the mutex is signaled if the thread dies.

7.3 Using Critical Sections
Critical sections are used for synchronizing exclusive access to shared resources within a single process. Critical sections can only be used by threads within the same process. Often critical sections are used for serializing access to a section of code which can be entered by only one thread per process at a time.

Calling a Signal() on a critical section object before occupying it by Wait() at the same thread panics the thread, which is not the case with other synchronization objects.

Termination of threads does not affect the state of critical sections. Therefore, threads using critical sections should not be killed from another thread, unless it can be guaranteed (for example, with a mutex) that they are not inside a critical section. It is safer to let those threads kill themselves when they are not needed anymore.

8.0 Summary

Symbian is a Single User, preemptively multi-tasking Operating System. The multi-tasking in Symbian is priority-based with priority inheritance. It is real-time operating system designed specially for advanced mobile phones running on ARM processor. It has integrated telecommunication support, data management, graphics support and framework for variety of application engines. It integrated the power of computing in the mobile telephony. Symbian OS is not only an operating system but a full software and communications platform. This means more applications are already available for developers. Several application platforms were defined and their usages depend on the mobile phone capability integrating this OS. It's application platform are series 60, series 80 and series 90 UI of mobile devices. Technically and financially it is very successful operating system which is dominant in the today's mobile market and more than 52 mobile companies have used this Operating System.

9.0 References:

1. http://www.devx.com/wireless/Article/17090/1954?pf=true
2. http://64.233.161.104/search?q=cache:Sn_iQ58bQ90J:www.symbian.com/developer/techlib/papers/newipc/new_ipc_mechanisms_for_symbian_os.pdf+deadlock+management+in+Symbian+OS&hl=en&client=firefox-a
3. Symbian OS, www.symbian.com, 2005.

 4. Nokia Corporation (2005). “Symbian OS: Threads Programming”

PAGE
2

