Singularity:
 A glimpse at Microsoft’s newest Operating System
CS-550-2: Operating Systems

Fall 2005

Russell Lambright
This assignment is Honor Code compliant. _________________________
Table of Contents
3Introduction

3Micro-Kernel

5Job Scheduler

5Strong Process Isolation

7Channel Contract

8Conclusion

9Bibliography

Introduction

In 2003, the Microsoft Corporation set out to design a new operating system. They wanted to build an operating system from scratch in an effort to take advantage of new software technologies that have emerged in the last decade. To accomplish this, a team of Microsoft Researchers was assembled with Galen C. Hunt and James R. Larus as the Project Leaders.

The name chosen for the new OS was Singularity. According to the Singularity Technical Report 1 written by team leaders Hunt & Larus, Singularity is a research OS and is not intended to have all the “bells and whistles” of a commercial grade OS. Singularity’s main purpose is to facilitate the development of new operating systems, and programming languages. The inspiration for this OS is to see what an operating system would look like if it were designed strictly for dependability. For the purpose of the Singularity Project, Hunt & Larus defined system dependability as “a system that never behaves in a manner unexpected or unanticipated by its designers, developers, administrators, or users” (Hunt & Larus, 2004). To accomplish this goal of system dependability several core OS components have been reexamined and redesigned. In this paper, I will discus several of the new technologies and concepts that have been incorporated into Singularity.
Micro-Kernel
Singularity is a 99% managed OS. It is a multi-threaded system where each process must have at least one main thread and may choose to dynamically create more. The hardware environment is Intel’s x86 platform. The first significant fact to notice about singularity is its kernel structure. Most of today’s top operating systems like UNIX or Windows have Monolithic kernels, meaning the kernel is self-contained and has all of its necessary code contained within kernel space. On the other hand, Singularity uses a Micro-Kernel. In a Micro-Kernel system only the privileged portions of code are contained within kernel space and all other kernel functionality is broken up into servers and placed in user space. The Micro-Kernel was also selected for Singularity because of its inherent stability. Since the kernel is broken up into servers, should one of these servers fail the entire system is not compromised.
One major draw back of the Micro-Kernel is poor performance. This is due to the increased number of context switches required to move data between the user’s software and the servers and between the servers themselves. Singularity has overcome this problem by implementing Strong Process Isolation.
Through the use of Strong Process Isolation, the OS can reduce the time it takes to perform a context switch by eliminating the use of memory management hardware. This reduces context switching time by an order of magnitude over that of conventional operating systems like UNIX or Windows, thereby making the Micro-Kernel a viable option. The following table from an Overview of the Singularity Project shows the number of CPU cycles required to perform various tasks requiring context switching. The results from Singularity are compared to those of FreeBSD, Linux and Windows performing the same tasks:

[image: image1.emf]
 Table 1 from an Overview of the Singularity Project (31)
When developers wish to invoke the kernel’s functionality they can use the Application Binary Interface. The Application Binary Interface is strongly versioned. So when a program using this interface is compiled, the ABI version is compiled into the image as well. Subsequently, when a program is installed on a machine running Singularity, the ABI version is checked against the current ABI version and if found to be incompatible, the program is prohibited from installing on that system.
In Singularity, the kernel is responsible for allocating memory for processes both at creation time, and any time during the process’s running lifecycle. When a program is compiled using a Singularity compiler, trusted code is inserted into the process image. This trusted code is used to monitor the amount of free space in the process’s stack segment. When this trusted code observes that the stack segment is full, it performs a system call which in turn disables interrupts and invokes the memory manager. The memory manager then allocates a new page to the process. This process allows Applications to start with a minimal stack segment and increase the size only if and when necessary. In addition, the system may automatically reclaim stack space once it is no longer in use by the process.
Job Scheduler

The current version of Singularity uses round-robin for job scheduling. The OS designers choose to implement the scheduler using two queues, the unblocked queue and the preempted queue. The names of the queues are self-explanatory, but the order in which the scheduler selects jobs is not what you might expect.
Most round-robin implementations have only one queue that favors preempted processes and place the unblocked processes on the back of that queue. However, do to the method of interprocess communication (Strongly Typed Channels) which will be discussed in the next section, the OS designers determined that processes will block quite often while waiting for another process to reply to its message. Because of this they decided to favor the unblocked queue over the preempted queue. So, when the scheduler is invoked it first selects jobs from the unblocked queue. Then, when the unblocked queue is empty, jobs from the preempted queue are allowed to run.
Strong Process Isolation

In the previous section I mentioned Singularity’s use of Strong Process Isolation. With that in mind, I will take the time now to formally introduce you to the concept of the Software-Isolated Process (SIP). Singularity has replaced the conventional OS process with a SIP. In Singularity, an active application or any piece of an active application is represented by a SIP (This includes the non-privileged part of the Micro-Kernel, and device drivers). SIPs are similar to conventional OS processes, but have a number of noticeable differences.
First, Singularity does not allow memory sharing. This means given any two SIPs A and B, B may not contain a pointer to any object referenced by A and vice versa. This brings about the problem of interprocess communication. If SIPs can not share memory, then how do they communicate with other SIPs? This is accomplished through a Strongly Typed Channel (STC). The concept of Strongly Typed Channels is very similar to the Message Passing Interface (MPI) used in parallel computing. However, in a STC the message must meet the conditions of a predetermined Channel Contract. Information on Channel Contracts is forthcoming in the next section.
Since Singularity does not allow processes to share memory, there is no need to use memory management hardware protection. Instead each process must be verified at process creation time and at compile time. The current version of Singularity contains a trusted compiler. It is the compiler’s job to assert that the process isolation constraints are adhered too. This current arrangement is undesirable because it requires that the compiler be part of the operating system’s trusted code base and limits the languages supported. So future versions of Singularity will use Typed Assembly Language to verify the correctness of the code as it relates to Singularity’s constraints. By using Typed Assembly Language as a verification platform, anyone will be able to write a compiler for Singularity because Typed Assembly Language requires that a process image contain a proof. According to Singularity’s design team, “Verifying that a [Typed Assembly Language] proof is correct and applicable to the instructions in an executable [image] is a straightforward task for a simple verifier of a few thousand lines of code” (Hunt et al., 2005).
Also different from the MPI, is the use of the Exchange Heap instead of sockets. The Exchange Heap is an area of main memory where SIPs can create objects to be sent along a STC. When data is passed from one process to another, exclusive ownership of that data is also passed to the receiving endpoint, so only one SIP can point to any given object in the Exchange Heap.
Another major difference between conventional processes and SIPs is that SIPs are “closed objects” (Hunt et al., 2005). This means SIPs can not be altered during their running lifecycle. Once a SIP is created by the kernel it can not modify its code (intentionally or accidentally) or extend its code by use of a dynamic library. If a user wants to extend an application via a plug-in or dynamic library their extension would have to run as a completely separate SIP and set up a STC to communicate with the parent object.
There are definite benefits to having processes that are both closed and memory isolated. First, errors can be localized to one particular SIP. When a SIP encounters a terminal error, the OS terminates the SIP and reclaims its resources. This can be done without fear of corrupting the system or causing other processes to become unstable.
Every SIP is assigned its own Garbage Collector (GC) at creation time. Singularity uses several different types of Garbage Collectors. The type of GC assigned to a given process is based on the operating system’s analysis of the process at creation time. This can be done successfully because each SIP is closed and all code is present in the process image at process creation time.
Channel Contract
A channel contract is a series of message declarations whose interaction is controlled by a state machine. The following code snippet from An Overview of the Singularity Project will aid in understanding the contract better. The following code is written in Sing#:
contract C1
{

in message Request(int x) requires x>0;

out message Reply(int y);

out message Error();

// Initial State

state Start: Request?

-> (Reply! or Error!)

-> Start;

}

In this contract, three messages are defined Request, Reply, and Error. The arguments are used to determine the format and data types of the message being transferred. The “requires” clause can be added to any message declaration to put further constraints on the message.

The “Start” statement determines the sequence of events. In this example, the “Request?” indicates that the process is ready and willing to receive the “Request” message. The next line “(Reply! Or Error!)” indicates that after the “Request” message has been received the process may respond with either a “Reply” message or an “Error” message. The last line of code indicates that this production may be repeated infinitely.
This example is written in Singularity’s official language Sing# which is an extension of Microsoft’s C# language. Sing# is designed to support pre and post conditions for defining program behavior as well as providing support for message-passing communication. (Hunt et al., 2005)

Conclusion

Within the OS specifications I was unable to find any mention of SMP or multiprocessing support. However, it is evident from the OS design that implementing that type of support would not be hard. All processes are already isolated and memory can not be shared. I believe this is a good starting point for creating a stable and efficient multiprocessing environment. Also, the inherent nature of SIPs is conducive to parallel computing as in a Beowulf cluster. The SIPs are already self contained and could easily be migrated from one machine to another for execution (Master/Slave).
While many Operating System advances have come about due to advances in hardware, Singularity stands out as an Operating System whose new innovations are due in large part to advances in programming languages. While I do not believe Singularity will ever become a mainstream OS, I do believe this OS is laying the framework for a new class of operating systems that will eventually replace our general concept of what an OS should look like and be able to do. I look forward to evaluating Singularity once it is officially released.
Bibliography

Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P., Fahndrich, M.,
Hawblizel, C., Hodson, O., Levi, S., Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T., Zill, B. (2005). An Overview of the Singularity Project. Redmond, WA: Microsoft Cooperation. Microsoft Research Technical Report; MST-TR-135.

Hunt, G., Larus, J. (2004). Singularity Technical Report 1: Singularity
Design Motivation. Redmond, WA: Microsoft Cooperation. Microsoft Research Technical Report; MST-TR-105.

Mooney, Paul (2005). “Singularity OS.” URL:

http://dotnetjunkies.com/weblog/paul/archive/2005/10/30/133490.aspx
Foley, Mary (2005). “Microsoft’s Other OS.” URL:

http://www.microsoft-watch.com/article2/0,2180,1882174,00.asp

PAGE
5

