Palm OS ®
PROJECT REPORT

Prepared for:

CS 450-15:30: Operating Systems

Fall 2005

Prepared by:

Amit Bhatia, Jeremy Etzkorn, Paul Rutschky

Tony Picarazzi, Adam Lee

This assignment complies with the JMU honor code and the requirements from this course.

December 8, 2005

Table of Contents
Overview……………………………………………………………………………….....1

Memory Management…………………………………………………………………...2
File Management…………………………………………………………………………3
Process and Thread Management………………………………………………………5
Conclusion………………………………………………………………………………..7
Work Cited……………………………………………………………………………….8
(i)
Overview

Jeff Hawking, founder of Palm Computing, introduced the Palm OS that was developed and used for the original Palm Pilot 1000 that was released in March of 1996. The company was quickly recognized in the commercial and computing industries, and soon attracted the eye of major corporations who then partnered with Palm Computing, some of which include Sony, Samsung and Garmin. In little over a year, the product line received both the PC Computing’s MVP "Usability Achievement of the Year" Award and Information Week’s “Most Important Products of 1997” award (Palm, 2005). This operating system has undergone several changes throughout the years, and is currently being utilized in eighty percent of all mobile devices because of the simplicity, intuitive design and features implemented within.

Compared to most operating systems, the Palm OS seems very simplistic, almost elementary; however, it does not need to be highly extensive due to the working environment, and therefore can specialize in particular areas of more interest to mobile devices. The operating system prior to Cobalt, the latest version of the Palm OS, only runs one program at a time, meaning single thread, and is event driven because of the working environment. Multi-threading was not very pertinent at this time because of the lack of power the 16 MHz CPU had to offer, as well as the user will only run one program at a time visually because of screen size. This was also implemented this way because of power and user considerations; users require fast response time and the OS wants to be free of load at any given time to conserve battery life. The file and memory management structures in Palm OS are database oriented, making references to files and resources very efficient, and well suited to effectively utilizing the original 128 kilobytes of RAM included. The memory manager also has a built in, OS controlled defragmentation program that, when the device is running idle, will automatically defragment memory to maximize efficiency.

Since the Palm OS is intended for use with portable devices, battery management is another key feature that this operating system includes. Power is constantly given to the OS to keep it running at all times, but there are different power modes to conserve battery life at a given time: sleep mode only routes power to interrupt generation circuitry and the real clock, doze mode implies the CPU is idling because there are no instructions for it to perform, running mode means the CPU is currently executing statements (PalmOS, 2005b)

The graphical user interface, or GUI, is another astounding achievement for the Palm OS, because it concentrates on the needs for the users. All programs thought to be used on a daily basis are conveniently located in an orderly fashion on the main window. The OS does a very good job on utilizing space on the display screen, even going as far to add a ‘writing area’ where the user may hand write letters, numbers and symbols into programs. Palm OS contains built in applications for the user, such as Address Book, Date Book, Notepad and Calculator, but does not limit the user to only these; there are also commercial products, 3rd party applications and open source programs for the user.

1
The Palm OS has been through many changes throughout its 10 years on the market. Beginning with version 1.0, the OS supported a 16MHz processor, black and white display and 128 kb of RAM. A major improvement was not made until versions 3.x, where 8-bit color was incorporated on a separate color controller chip. Faster CPU support was included in these versions as well as support for extra expansion bays for extra external memory. Version 4.0 made yet another improvement by including support for the popular Secure Digital memory cards. A Virtual File System was also implemented in version 4.0 to broaden the compatibility of external memory volumes of all types (PalmSource, 2005b). Version 5.0, named Garnet, introduced to the Palm OS the support for P.A.C.E., or Palm Application Compatibility Environment. Essentially, P.A.C.E. is an emulated environment that gives the OS much more support for aging programs, still using the 68k API (PalmOS, 2005a). This environment not only offers compatibility, but speed even after the overhead of the emulator itself. Version 6.0, named Cobalt, is the very latest operating system offered by PalmSource, introducing the new Palm OS Protein API, which will replace the old 68k API. It will still be backwards compatible with Palm OS 68k API programs via P.A.C.E., and it will implement entirely new features, including support for multi-threading, multi-tasking processors, a protected memory architecture that prevents system crashes and 128-bit encryption for users among other things (PalmSource, 2005a).
Memory Management

Palm OS is designed to run applications on small low-cost, low-power handheld devices. This means that Palm OS must be efficient in its memory and resource management. Palm OS devices have one type of memory source (a memory card). This one type of memory source must hold all information from temporary allocations such as application stacks, and global variables to files that need to be saved and used later.

The memory source consisting of a memory card or multiple memory cards is divided up into two sections Dynamic RAM and Storage RAM. Dynamic RAM is much like memory on a desktop computer. It is used for temporary allocations such as global variables, applications stacks, and dynamic allocations by applications. Storage RAM is much like a hard drive on a desktop computer. It is used to hold non-volatile data such as appointments, memos, address lists, etc.

Dynamic RAM is broken up into one Dynamic Heap. A Heap is a contiguous area of memory that is used to contain and manage smaller ‘chunks’ of memory. The first Heap (Heap 0) on card 0 is always the dynamic Heap. On version 3.0 the first 96 KB was allocated to the dynamic heap and all the rest of the memory was used by storage heaps. Since version 3.5 the amount of memory dedicated to the dynamic heap is dependent upon the amount of memory available to the device. After the dynamic heap is allocated all the rest of memory is used for Storage RAM which is managed by the Data Manager and uses one or more storage heaps.

2
The Dynamic Heap contains: a heap header, master pointer table, and the heap chunks. The heap header consists of the size of the heap, and flags. Next the Master Pointer Table contains 32-bit address pointers to the movable chunks in the heap. If a moveable chunk is moved the master pointer table updates that chunks pointer. All applications get a pointer to the master pointer table, not the individual chunks. And lastly the heap contains the chunks themselves, which cannot be more than 64 KB.

There are two different types of Heap Chunks, moveable and nonmovable. The moveable chunks have a pointer in the master pointer table, and nonmovable chunks do not. The nonmovable chunks simply return a pointer to their specific memory address when you allocate them. Each chunk begins with an 8-byte header followed by that chunk’s data. The chunk Header consists of:

· Flags:sizeAdj (1-byte) – “The flags nibble has 1 bit currently defined, which is set for free chunks. The size adjustment nibble can be used to calculate the requested size of the chunk, given the actual size. “(Palm OS Companion)

· Size (3-bytes) - The size of the chunk (up to 64 KB)

· Lock:Owner (1-byte) – holds owner id in low nibble, and the lock count in the high nibble

· HOffset Field (3-bytes) – the distance from the master pointer table to the chunk header divided by two.

To allocate a new moveable chunk you use the command MemHandleNew and pass the desired chunk size. This allocates a chunk of memory with the specified size, updates the Master Pointer Table, and then returns a pointer to the Master Pointer Table. Before you read or write to this memory you must call MemHandleLock, which returns a pointer to the specific chunk of memory. This also ‘locks’ the memory locations so that the memory manager does not move it. You may lock a chunk a maximum of 14 times. You can then use MemHandleUnlock to unlock the chunk so that the memory manager can then move it as needed. When you wanted to release the chunk use memHandleFree and it will release the chunk even if it is locked. The owner ID field in the header associates the chunk to the application so that when the application ends the chunk is freed.

File Management
Palm OS File Management differs from file management of traditional desktop operating systems in that the Palm OS file management structure is designed to operate on a PDA, which has significantly less capability of handling large files. Because of the challenges of limited availability of dynamic RAM and limited battery life, Palm OS uses methods such as non-volatile RAM storage and a database structure of data storage to overcome these challenges.

All files are represented as a database. The database consists of two sections, the database header, and the database record list. The header contains several fields that describe the record:

3

1. name

2. attributes

3. version

4. modificationNumber

5. appInfoID

6. sortInfoID

7. type

8. creator

9. numRecords

The name field holds the name of the database the record belongs to. The attributes field consists of four flag bits, the delete bit, the dirty bit, the busy bit, and the secret bit. The delete marked when a file is to be deleted, so once the PDA is attached to the desktop docking station the record can be deleted. The dirty bit is set when a record is updated. The busy bit is set when the record is being used by an application. This is important because with the Palm OS file management structure, only one resource can use a database record at any given time. The secret bit marks records that can only be accessed when the user enters the appropriate username and password on the handheld. The version field holds an application specific version number for that database. The modificationNumber field is incremented every time a database record is added, deleted, or modified. The appInfoID is an optional field that may store things such as user preferences for a particular database. The sortInfoID is another optional field that stores sort information for the database. The name and creator fields are used to store information about the record, telling if the record is a data or an application, and which application the data belongs to if it is data. The numRecords field stores the number of record entries in the database header itself. These header entries are a paramount part of the file management system Palm OS uses, and can be considered the backbone of the file management process. The database record list stores all of the data for the database.

There are three main types of structures that are employed to put these records to use, the Data Manager, the File Streaming API, and the Virtual File System. The Data Manger manages user data in the storage heap. It is used solely used for data that is stored on the handheld itself, as opposed to data stored on devices such as memory sticks.

The File Streaming API is another structured used for data storage and manipulation. It is mainly used for large chunks of data, which is not a common handheld device due to a shortage of memory.

The Virtual File System (VFS) is a file system used to manage data on devices such as memory sticks. Because of this, the VFS must be capable of reading and accessing many different types of file systems, since many different companies produce their own industry standards. While this versatility increases convenience of data management, this type of file system has to read all of its data from an outside memory source, such as a memory stick, which significantly decreases the speed of operations.
4

As a handheld can have no limit to the number of memory sticks it may store data on, it is easy to see how the database header information is essential to a structured, organized, efficient file management system.

Process and Thread Management
In Palm OS, there are two types of processes that can be created. The first type, called an Application Process, is created when an application runs. Only one Application Process can be run at a time. When the user wants to switch applications, the current Application Process is torn down and all of its data is purged from memory. When this is completed a new process can be created. A process can also ask another application to perform some service that it needs through the use of a Sublaunch. When a Sublaunch occurs, the sublaunched code is loaded into the Application Process and executed in-place (PalmSource, 1.1). This leads to an unsafe operating condition for the system though, due to the fact that the sublaunched process has complete access to the data in the Application Process that called it. Because of this fact, PalmOS implements something called Remote Sublaunching. In a Remote Sublaunch, a temporary process is created where the sublaunched process is executed. This temporary process is given temporary access to the data in the main Application Process. While the remotely sublaunched code is executing, the main application is completely blocked, so there is effectively still only one flow of execution. (PalmSource, 1.1)

The second type of process in PalmOS is called a Background Process. A Background Process is a process that is used to execute code that needs to persist across application switches (PalmSource, 1.1). According to PalmSource:

“…code from multiple independent applications may be running in the Background Process, and any application is free to load code into the process as desired. Because of this, the Background Process is not a secure address space. Secure operations must be executed in the Application Process, where the application has full control over what is loaded. In addition, crashing code will bring down all other threads running in the Background Process. There are facilities for applications to be notified of a thread crashing so they may restart any desired threads.” (PalmSource, 1.1)

PalmOS is constructed to be a multithreading OS as well as a multitasking one. In PalmOS:

“a thread is autonomous unit of execution with its own set of registers, stack, program counter, and other state needed to execute code. Palm OS Cobalt allows for multiple threads executing simultaneously. A thread that would like to execute code is in a READY state. When two or more threads are ready to run, the system schedules them based on their priority, using round-robin scheduling for multiple threads with the same priority.” (PalmSource, 1.1)

5

To synchronize between running threads, PalmOS includes two types of synchronization primitives. Traditional primitives are implemented in the kernel and can be used to synchronize threads across processes. (PalmSource, 1.1) Lightweight primitives are implemented in user space and can only be used to synchronize threads in the same process. (PalmSource, 1.1) Traditional primitives in PalmOS include mutexes and counted semaphores. Only one thread can hold a mutex at a time; all other threads trying to acquire the mutex are blocked until the first thread releases it, at which point the next thread gains access to the mutex and continues its execution (PalmSource, 1.1). Counted Semaphores provide a very general synchronization primitive, which can be used to construct many other types of synchronization semantics (mutex, reader/writer, producer/consumer, etc) (PalmSource, 1.1). For lightweight synchronization, PalmOS supports critical sections and condition variables. Critical sections are lightweight versions of mutexes, while condition variables provide a subset of traditional condition variable semantics (PalmSource, 1.1).
Threads execute based on their priority level, where 1 is the highest priority and 255 is the lowest. PalmOS also supports multithreading with 8 possible states. These states are summarized in the table below:

	State
	Description

	RUNNING
	The thread is running.

	READY
	The thread is ready to run, but because it is not the highest priority thread it is queued on the ready list.

	WAITING
	The thread is blocked, waiting for some condition to clear or resource to become available. A thread can wait on one or more other threads by calling SysThreadGroupWait().

	SUSPENDED
	The thread is suspended. A suspended thread does not resume execution until it has been resumed.

	WAIT-SUSPEND
	The thread is both waiting and suspended.

	DORMANT
	The thread has been created but not yet started.

	FAULTED
	During execution of the thread's code, a fault occurred.

	FAULT-SUSPEND
	The thread is both faulted and suspended.

Table Source: (PalmSource, 1.1)

6

Conclusion

Although Personal Digital Assistants (PDAs) are a fairly new advancement in the computing world, they are designed to accommodate for the rapid changes the computing industry brings with every day. PDAs currently on the market are significantly more powerful than personal desktop computers of only twenty years ago. Palm OS has had to accommodate for these rapid future expansions while at the same time limiting itself to operate on the technology of today. This has shaped Palm OS to create an OS structure that not only suites the needs of the current state of technology, but also looks to the future for anticipated expansions. As this is the nature of the beast in the computing realm, it is a noble fight to have not only the knowledge of the current state, but also that of the future. Thanks Palm OS.
7
Works Cited

Palm(2005). “PalmPilot – The Pocket Organizer that Launched a Revolution.” URL:

http://www.palm.com/us/products/palmpilot/

PalmOS(2005a). “Core Platform.” URL:

http://www.palmos.com/dev/core/

PalmOS(2005b). “Exploring Palm OS: System Management.” URL:

http://www.palmos.com/dev/support/docs/protein_books/System_Management/
PowerManagement.html#992911

PalmSource(2005a). “Palm OS Releases.” URL:

http://www.palmos.com/dev/tech/oses/cobalt60.html

PalmSource(2005b). “Palm OS Releases.” URL:

http://www.palmos.com/dev/support/docs/palmos40
PalmSource(2005) – Greg Wilson (1.1) URL:

http://www.palmos.com/dev/support/docs/protein_books/System_Management/
Threading.html#1019891

PalmSource(2005) – (1.2) URL:

http://www.palmsource.com/palmos/cobalt.html
PalmSouce(2005) – “Palm OS® Programmer’s Companion” URL:

http://www.cs.uml.edu/~fredm/courses/91.308-spr05/files/palmdocs/
Palm%20OS%20Companion.pdf

8

