IBM OS/2 Warp

Operating Systems

CS 450

Section 1

Fall 2006

Patrick Caldwell

Matt Kerster

Mike Roe

Mike Storck

Table of Contents

Topic

Page

OS/2 Intro

1

Memory Management

2

Processor Modes

2

OS/2 Scheduling

3

Interprocess Communication

3

OS/2 Intro

Operating System/2 (OS/2) was originally developed as a joint project between IBM and Microsoft. The intention of the OS/2 was to replace the antiquated Disk Operating System (DOS) as the operating system of choice. The OS/2 Warp was designed for business use and to be used in a business environment. Particularly, OS/2 Warp is used by banks and in other places where money is being handled and reliability is absolute necessary. The OS/2 Warp did not advance the state-of-the art, but compared to some of the big name operating systems out during its time, it was better. It is often compared to Windows operating systems and the general consensus is that it is a much faster and reliable system. The OS/2 Warp had a brief period of economic success, but overall you can not say that the OS/2 Warp was a successful product. The OS/2 Warp was especially not successful commercially. The most major problem that seems to get a lot of attention is that the OS/2 Warp was absolutely horribly marketed and could have done much better. The system it self was great, but it needed to be marketed well and IBM failed at doing so, and therefore the OS/2 Warp failed as a product. Other problems with the OS/2 Warp were that there was not enough “shrink wrapped” software packages written specifically for it. Part of the reason for this is Microsoft’s relentless attempt to discourage people from using the product, especially preventing software developers from publishing products for it. Another problem with the OS/2 Warp is that it seemed to be very difficult to install and many people complained about it. The OS/2 Warp 3 was the most notorious for this problem. Although the product didn’t not do as well as it was intended to do it was still a good product and had many features that other systems did not. The OS/2 Warp 3, which is probably the most successful of all the different versions, had many key features. It was released in 1994 and was the first PC operating system to have built-in Internet support. The release of OS/2 Warp Connect followed, and included full network support out of the box for all the major protocols, including IPX, TCP/IP, and NetBIOS. At this point, the focus for OS/2 became the "networked computer." OS/2 Warp 4.0 (codename "Merlin") was released in August, 1996. It's new features included a "beautified" GUI, and a full Java Development Kit, which included a Java Virtual Machine, which allows Java applications to be run independent of a browser. The OS/2 Warp 4 also included VoiceType Dictation system, which allowed users to navigate their computer and dictate text to their computer without ever touching a keyboard or mouse.

Memory Management

OS/2 runs its processes in protected memory. This means that a process is prevented from corrupting another process' memory area. Because of its use of 32-bit address space, the size of memory segments were not bound to the 64KB limit that they were under the 16-bit address spaces under DOS. The use of 32-bits allowed OS/2 access to 4GB, although this number is much smaller in practice because OS/2 limits the available memory for processes to 512MB, reserving the rest for the operating system. OS/2 also made use of virtual memory. With virtual memory, the operating system saved contents of memory to disk if the space was needed, and the block of memory is not currently in use.

Memory is allocated using the DosAllocSeg call. The three parameters that are passed in are the size of segment to be allocated, a selector and a flag. The selector is simply a segment address and was not a location in physical memory. The flag has three options, the first to stating whether the memory segment is sharable with other process and the third saying if the operating system is able to discard the segment without first saving it to the disk. If the size of the segment needs to be resized, a DosReAllocSeg call will be made, with the new size and selector being passed in. Finally, when a process is finished, a DosFreeSeg is made, freeing up any memory that segment possessed. If a process allocates memory but does not free it, OS/2 will free it upon termination. The selector is simply a segment address and was not a location in physical memory. The selector is converted to a pointer, which includes a segment and an offset. The selector that gets returned is simply the higher 16 bits of the pointer.

When OS/2 needs to allocate memory that it is currently unavailable, it will save a segment to disk and use the space that was freed up. To decide which segment to free up, it uses a Least-Recently Used algorithm. When the segment written to disk is requested, it is placed back into main memory. If there is no available memory, the OS/2 will go through the LRU algorithm again to determine which segment to switch out. If the flag is set to the highest value however, the segment becomes discardable, and will not be save to the disk when the operating system needs its space. If a process needs what was in that segment, if it is not there, it will have to be loaded from disk into memory before it can be used. When a process uses access a segment of memory that has been flagged as discardable, a DosLockSeg call is made. This prevents OS/2 from discarding the segment until a DosUnlockSeg call is made.

Memory Sharing

When the lowest value is set in the flag, sharing is allowed through the the DosGiveSeg call. This allows for the process that allocated a memory segment to give another process the ability to access its segment. This call is passed in a selector and the process ID of the process receiving access to the segment. This is useful when a child wishes to give its parent access to its own allocated memory segments. When a process wishes to ask for access to a segment created by another process, it makes a DosGetSeg call, which has the same parameters as the DosGiveSeg call.

Another method OS/2 uses to share memory segments is by allowing blocks of memory to be named. This is accomplished by calling DosAllocShrSeg, and is passed a name and selector. The block can be named anything desired, as long as it begins with SHAREMEM. After the block is allocated, it can be treated in the same manner as a segment that is created with DosAllocSeg. For a program to gain access to the segment, all that is needed is the name which can be obtained through a DosGetShrSeg call. The contents of this block can be read, and written to by all processes that have access to it. The memory space that the block occupies will only be freed once all processes that have access either through DosAllocShrSeg or DosGetShrSeg have freed it. The one catch to this approach is there cannot be more than one block with any given name. Attempting to do will result in an error. This error can be useful and can be used by programs to know if a block can be created or if they can just access an already available block.

Processor Modes

OS/2 Warp can run on uniprocessor or multiprocessor computers. OS/2 Warp was designed to fully implement Symmetric Multiprocessing also known as SMP. SMP allows OS/2 Warp to utilize two or more processors at the same time to increase the computational capabilities of the system. OS/2 Warps’ SMP system can allow the same program to run on multiple processors at the same time to increase performance times.

OS/2 Warp utilizes various processor modes. These modes are defined with four different states called rings. Ring 0 is the supervisor mode that handles all of the kernel operations. Ring 3 is the user mode and is the least privileged of the modes. Ring 2 is sometimes denoted as a “privileged user mode” because it combines some functionality of Rings 0 and 3 although it is much more closely related to the later. The Ring 1 layer is not implemented at all in OS/2 Warp. Ring 0 and Ring 3 are the most predominantly used modes of the operating system. Ring 0 can perform many tasks that Ring 3 instructions cannot including input/output operations, complete usage of all memory in the computer, and running of device drivers. All user applications would exist in Ring 3.

OS/2 Scheduling

OS/2 uses a combination of preemptive-priority scheduling and round-robin scheduling in order to determine which threads have use of the processor at any given time. Within the priority scheduling scheme, there are four total priority classes, and thirty-two priority levels per class. Round-robin scheduling is used when multiple threads exist within the same priority level. The timeslice that is given to a thread can be configured by the user in CONFIG.SYS. A thread will run for its entire timeslice until preempted or issues a blocking call.

 The highest priority class is the time critical class. Threads that run in this class perform activities that require rapid response to a certain event. Soon as a thread is ready to run, it will be on the processor in at least 6 milliseconds. The priority level of a thread in this class is fixed and cannot be changed.

The second highest priority class is the server class. The purpose of this class is to make sure that threads that have a client program waiting on their response are slowed down by threads with a regular priority class running on the server.

The third priority class is the regular class. The majority of all threads are of this class. Regular priority threads are able to have their priority level changed based on whether they require I/O or are running in the background. Threads that become starved will also have their priority boosted if they have not had a turn on the processor in a certain amount of time. Users are able to configure this amount of time by changing the MAXWAIT variable in CONFIG.SYS.

The final priority class is the idle class. Threads here only run if there is no other work to be done in the system. These threads generally consist of daemons that only need to perform a small task before going into a blocked state.

Interprocess Communication

In OS/2, each thread is in one of three states: running, ready to run, or blocked. Only a single thread in the system is actually in the running state on uni-processor hardware platforms. The running thread is the ready-to-run thread that is currently selected to run according to the OS/2 priority scheme. Threads that are in the blocked state are awaiting the completion of an event. When OS/2 switches between threads, it automatically saves the context of the current running thread and restores the context of another thread that is ready to run. This is called a context switch. Compared to the process states covered in class, they are almost identical. The states covered in class were the running state, which is when it is using the processor, the ready state which is waiting for the processor, and the blocked state, which was running, but requested a resource that was unavailable and it will remain blocked until it is allocated the resource needed.

OS/2 uses a multi-thread process model. There are several advantages to a multi-thread process model over the traditional single-thread process model found in many systems such as UNIX. Since threads share the process's resources, thread creation is far less expensive than process creation, and threads within a process enjoy a tightly coupled environment. When a thread is created, the system doesn't have to create a new virtual address space or load a program file, resulting in an inexpensive concurrent execution path.

OS/2 provides the facilities for separate programs, each running in their own address space, to communicate information through system supported interprocess communication protocols (IPC's). These include:

· An Anonymous Pipe - a fixed length circular buffer in memory that can be accessed like a file of serial characters through a write handle and a read handle (handles are pointers into the file). Anonymous pipes are used mostly by parent processes to communicate with their descendants by passing the pipe handles through inheritance.

· Named Pipes - provide two-way communications among unrelated processes either locally or remotely. The server side of an OS/2 process creates the pipe and waits for the clients to access it. Clients use the standard OS/2 file services to gain access to the named pipe. Multiple clients can be serviced concurrently over the same pipe.

· A Queue - allows byte stream packets written by multiple processes to be read by a single process. The exchange does not have to be synchronized. The receiving process can order the access to the packets or messages in one of three modes: first-in/first-out(FIFO), last-in/first-out (LIFO), or priority. Items can be retrieved from the queue either sequentially or by random access. The OS/2 queues contain pointers to messages, as opposed to a copy of the data itself.

· Shared Memory - provides facilities for the creation of named shared segments. Any process that knows the named memory object has automatic access to it. Processes must coordinate their access to shared memory through the use of interprocess synchronization techniques.

Interprocess synchronization is another corollary of multitasking. It consists of the mechanisms for keeping concurrent processes for threads from interfering with one another when accessing shared resources. The idea is to serialize the access to the shared resource by using a protocol that all parties agree to follow. OS/2, like most operating systems, provides an atomic service called the semaphore which applications may use to synchronize their actions.

Conclusion

OS/2 was ahead of its time in many aspects. However due to poor marketing decisions and heavy competition from Microsoft, it was never able to reach its full potential. IBM has recently announced that as of December 23, 2005 they will no longer offer OS/2 for sale, and support will end for it at the end of 2006. A movement from within the OS/2 community is seeking to have OS/2 made open source. This will most likely not happen though, since some of the code belongs to Microsoft and other third parties, who are most likely not going to allow their code to become open source.

Bibliography

Campbell, John L. (1988). Inside OS/2: The Complete Programmer’s Reference. Blue Ridge Summit, PA: TAB Books Inc. QA76.76.O63 C36 1988; ISBN 0-8306-9319-6.

Krantz, Jeffrey. Mizell, Anne. Williams, Robert (1988). OS/2: Features, Functions, and

Applications. New York, NY: John Wiley & Sons INC. QA76.76.063K74 1988;

87-34469; ISBN 0-4716-0709-6.

Myers, Tim (1992). “Overview of the OS/2 Operating System.” URL:

http://wwwedit.cs.wayne.edu:8080/~tom/guide/os2.html

Petzold, Charles. (1988). “OS/2 Memory Management (Environments)” PC Magazine.,

Jan 26 v7 n2 p.313-318.

Sipples, Timothy (1995). “OS/2 Warp Frequently Asked Questions List.” URL:

http://www.mit.edu/activities/os2/faq/os2faq0000.html
Tabi, Timur (1998). “High Resolution Timing Under OS/2.” URL: http://www.edm2.com/0601/timing.html

Patrick Caldwell – Interprocess Communication

Matt Kerster – OS/2 Intro

Mike Roe – Memory Management, OS/2 Scheduling

Mike Storck – Processor Modes

1

