Historical and Technical Brief of IBM OS/2 Warp

CS 450 Section 2: Operating Systems

Fall 2005

Dario Berini, Derek Cole, Drew Hayes, Leigh Johann, Matt Kesler
Table of Contents
Introduction

……….………………………………………

1

History

……….………………………………………

1

Processor Modes
……….………………………………………

3

Privileged Instructions……….………………………………………

4

CPU Scheduling and Threads
 ……….……………………………..

5

Symmetric Multi-Processing
 ……….……………………………..

6

Threads

……….………………………………………

6
Data Structures
……….………………………………………

6

File Management
……….……………………………..

6

Process Management
……….……………………………..

7

Memory Management
……….……………………………..

8

Memory Management for SMP……….……………………………..

8

Conclusion

……….………………………………………

9
Introduction

The evolution of computing has been greatly influenced by the design and development of OS/2. At the time of its development OS/2 introduced a paradigm shift for users. Notable features include multitasking, protected memory mode, advanced file systems and universal client connectivity. The innovations of OS/2 went largely unappreciated except by those in computing industry. Poor marketing kept OS/2 out of the hands of the masses. This paper will highlight the most important areas of the design of OS/2.

History
IBM’s Operating System/2 (OS/2) started life as a joint development project between Microsoft and IBM in 1985. The two companies were working together to create an operating system for the future and the new Intel processors (Wikipedia, 2005). 1984 marked the year that the PC-AT was released and was the first IBM PC to use the 80286 processor. The 80286 was Intel’s first processor to support multitasking. IBM announced that they would release an operating system to take advantage of this multitasking ability. IBM contracted out Microsoft to build the operating system, however, Bill Gates did not want to develop for the 80286, and was anticipating an OS for the already in development 80386. The two companies were still unresolved on this issue in April 1987 when IBM announced OS/2 Version 1.0. OS/2 V1.0 was released in December of that same year, as a text mode only operating system. Version 1.1 was released in November 1988 and included the Program Manager, the GUI for OS/2. OS/2 V1.0 was the first operating system to take advantage of hardware multi-tasking; two or more programs could be running, but only one could be on screen at a time. OS/2 V1.0 also allowed one very limited DOS session to be run as well. This was called the compatibility box, but many users called it the “penalty box” because it often would not run DOS programs like it should. OS/2 V1.0 could run 16 total processes, with four being used to run the OS and one used for the “penalty box” (Both, circa 1997).

Along with being the first OS to support hardware multitasking, OS/2 V1.2, released in 1989, was the first OS to use High Performance File System (HPFS). HPFS is supposedly more efficient and faster than FAT with enhancements in data integrity (Sipples, 1995). Advancements were already in the works in 1989 too, OS/2 V2.0 was a project underway that was actually designed for the Intel 80386, even though OS/2 V1.x would run on 80386 systems as well as 80286. Up until this point, Microsoft still had its hand in the actual coding involved in OS/2. Version 1.30 was released in 1991 and was the first version that was completely written by IBM. A lot of the code from V1.20 that was written by Microsoft was still there, but IBM was in the process of writing their own code for all of those routines. The result of IBM writing its first version was that OS/2 V1.30 was a smaller, faster and more stable than all of the previous versions. OS/2 V2.0 was released in the spring of 1992 as the first true 32-bit operating system. This version of OS/2 was able to run DOS and Windows programs as if they were on separate

computers. If one process crashed, it would not affect the rest of the processes on the

machine. The windows programs ran on IBM’s licensed version of Windows 3.1 called Win-OS/2(Both, circa 1997).

In 1994, IBM released OS/2 Version 3 as OS/2 Warp, a well designed OS. Warp is an advanced version of OS/2 specially designed to run on 80386 processors and higher. Warp was designed to make use of a microkernel abstraction layer. This means that the operating system was basically hardware independent. To be adapted to other hardware, modifications only needed to be made to the microkernel. By the time Warp was released, IBM had replaced most of the remaining Microsoft code, which helped simplify a lot of the features. For example, installing a printer in some of the older versions took 8 steps, however with Warp; the process was greatly simplified with the re-written Print Manager. Warp also took advantage of HPFS. In HPFS, fragmentation is reduced, seek time is reduced, longer filenames can be used, and there is support for larger storage. Warp also had in its favor the fact that it could be installed on any system that its main competitor could be installed on. The minimum system requirements included needing 4MB of RAM. This version of OS/2 also included programs for users of the internet. It included TCP/IP and a web browser called Web Explorer. Also included were a GUI FTP program and an email program (Sipples, 1995).

In 1996, IBM released the follow up version, Warp 4. The most amazing thing about this version was the connectivity. It came to be known as “the universal client.” This is because Warp 4 could provide simultaneous connectivity to almost any kind of machine or protocol, from TCP/IP to IPX to Windows NT to Windows for Workgroups, etc (Both, 1995). Even though Warp had a lot of plusses, there were a few drawbacks to the operating system as well. The first problem is that Microsoft designed some of the software to be inefficient, probably a smart move for Microsoft. The second thing is that, even after IBM took over the programming, there were not enough device drivers widely available. This discouraged the average user, and gave OS/2 a higher learning curve. The biggest problem with OS/2 Warp is that it has not been marketed correctly from it’s beginnings as OS/2 V1.0. IBM did not want to be a software producer, and let Microsoft handle the creation of their OS. Microsoft was not doing a very good job, as illustrated earlier with the printer installation, and was putting more resources in its own operating system, Windows. By the time IBM took over, Windows was doing well, and hardware manufacturers were not interested in making native drivers for the OS. In addition, IBM was charging the independent software vendors for its SDK, and Microsoft was giving theirs away for free. Outside of its own small niche of ATM machines and a small group of dedicated users, OS/2 is virtually non-existent. IBM announced that it will withdraw OS/2 Warp from shelves December 23rd, 2005. They will stop supporting the operating system in December 2006 (Wikipedia, 2005).

Processor Modes

At the time of OS/2’s development, Intel Corporation had developed a next generation microprocessor it called the 80286. At 8 MHz the 80286 had nearly double the performance of the previous generation 8086 microprocessor (Fine, 1999). The boost in clock speed was a significant step forward but the new 80286 brought several unique features to the computing world. Among the most important new capabilities were the ability to address physical memory beyond 1 MB and the addition of a second processor mode (Fine, 1999).

The two modes the microprocessor performed under were real mode and protected mode. When in real mode the 80286 functioned exactly like the older 8086 and inherited all of its limitations, including: 1 MB physical memory limit, no hardware multitasking and no capability to protect critical system resources. Under protected mode operation the 80286 could address physical memory up to 16 MB and could control the use of critical system resources by applications. That is, applications could no longer overwrite system memory that was in use by the operating system, the BIOS or other applications. There was one major draw back to protected mode operation. Once the microprocessor entered protected mode there was no way to re-enter real mode without resetting. For the early implementations of OS/2 this deficiency would become the source of great instability.

OS/2 was intended to make use of the new processor mode made available by the Intel 80286. OS/2 V1.0 when launched was among the most advanced multitasking operating systems in the world. Version 1.0 could support 16 different programs running simultaneously and 1 legacy DOS program. For the user this was actually limited to 12 because 4 were used by OS/2 itself (Necasek). The single DOS program capability was necessary because at the time of OS/2 V1.0’s release, the marketplace was overwhelming DOS based. Without DOS compatibility OS/2’s acceptance as the successor to DOS would have been severely handicapped. However the inclusion of DOS compatibility did not mean OS/2 ran legacy DOS programs flawlessly. Very much the opposite was true. Because DOS programs were written before the creation of protected mode, it was necessary to run OS/2 in real mode. Since the 80286 could not be switched into real mode without resetting the microprocessor this caused many problems. IBM’s solution worked but was shaky at best. Making the switch into real mode is similar to making a context switch among processes. Switching involved saving to main memory the complete contents of the microprocessor’s registers, the current location of the executing code, program the BIOS to instruct the microprocessor where in memory to return, reset the microprocessor and resume in real mode hopefully where program execution was ceased (Collins, 1991). This implementation, even with one hundred percent reliability, was not an elegant solution. During the reset the time required of the microprocessor to switch modes wastes hundreds or thousands of potential operations. It would not be until the introduction of the Intel 80386 with the addition of a third processor mode called Virtual Mode, that legacy DOS programs could run encapsulated

in a protected mode environment. Later versions of OS/2 took advantage of the newer

capabilities of the Intel microprocessors, specifically the 80386’s ability to switch processor modes without requiring a reset into real mode. From OS/2 Version 2.0 and onward DOS support became much more reliable and tolerant of legacy code.

Privileged Instructions

With the addition of protected mode operation, the Intel 80286 allowed an entirely new operating system design to occur. Protected mode allowed far greater control of system resources by the operating system than previously implemented. This was accomplished through the use of privileged instructions and protected memory that allowed the operating system kernel to ensure programs behave. Since privileged instructions were the creation of Intel it is their specification that is used by OS/2. Their specification made use of 4 control “rings” that would limit the capabilities of user applications to disrupt other applications. Though there are 4 rings, OS/2 only uses 3 of them. At the highest level, Ring 0, are kernel level instructions. Ring level 1 is unused by OS/2. Ring level 2 is described as “privileged user mode” though it functions nearly identically to Ring 3. Ring 3 is user mode and has the most restricted capabilities (IBM, 1996).

In order for these Ring levels to function properly additional registers were built into the microprocessor: the global descriptor table register, interrupt descriptor table register and the local descriptor table register. These tables are located in main memory and through these registers are referenced by the microprocessor. When a process is created the kernel makes an entry is into the global descriptor table (GDT) (Wikipedia, 2005). Only the kernel has access to this table. The information in the table indicates what parts of memory belongs to individual processes. A process running at Ring 3 requests the use of a piece of memory to the kernel at Ring 0. The kernel looks through the GDT and determines compares the privilege level of the calling process and the location in memory (Meilinger, 2000). If the location does not belong to the calling process a trap is called and the kernel denies the request. If the location is part of the calling process’s memory space or is not a part of another protected memory space, the request is granted and execution continues.

Much of the discussion has focused on Ring 0 and 3 however OS/2 uses Ring 2 to great extent. Specifically, Ring 2 is used by user level applications at Ring 3 to gain access to certain features of the operating system. For instance, the graphics libraries in OS/2 are implemented using DLLs that exist at Ring level 2. A Ring 3 user application in order to draw to standard output makes requests to the DLLs that serve as an API for OS/2 (IBM, 1996). The DLLs then running at a higher privilege level request service from the kernel. OS/2’s GUI, the presentation manager is also implemented through Ring level 2 instructions for user applications.

CPU Scheduling and Threads

The OS/2 scheduler is responsible for assigning the CPU to one of the dozens or hundreds of running threads at any given time on a typical system. In order to do this the scheduler applies two attributes to each thread: priority and state. Threads can be one of three states: running, ready, and blocked. Threads can also be one of four priorities: idle (only runs when nothing else is), regular (default), foreground server or fixed high (like regular, but priority is not lowered when placed to background), and time-critical. Within each of these priority classes there is a level or delta, ranging from 0 – 31. This delta is used to apply a relative difference between threads of the same class and to allow the scheduler to dynamically modify a thread’s priority (Timur).

OS/2 uses different scheduling mechanisms for Rings 0 and 3. In ring 3 the scheduler uses a priority-based mechanism, in which higher priority threads run before threads of lower priority. Threads of the same priority run in round-robin fashion. The scheduler can pre-empt a thread if it’s time slice, usually 32 milliseconds, has expired. This preemption is important because it provides a robust multithreading environment, preventing threads from blocking other threads and allowing developers to create CPU intensive applications without worrying about degrading system performance.

In OS/2, there are three ways or levels to “boost” prioritization: the device driver level, the task scheduling level, and the user level. The device driver level contains the lowest level of prioritization. Typically, the developer of a device driver will assign a performance boost to the host application when a wait state is finished. This boost is higher than all default programs and the foreground program (Waldron).

The scheduler can boost priorities for various conditions such as I/O, starvation, and foreground and keyboard input. The I/O requested by the device driver, as previously stated. The value of MAXWAIT in CONFIG.SYS determines the starvation boost. The default value of MAXWAIT is three seconds (Waldron).

At the user level the standard OS/2 allows for foreground, background, and user level prioritization using the CONFIG.SYS file. Very little control is provided via these settings (Waldron).

Regular threads usually have a 32 millisecond time slice, but few threads will actually run for the entire slice, as they will usually block before their time runs out. Time critical threads are different in that they have an 8 millisecond time slice. If a TC thread moves into the ready state and its delta is higher than the TC thread that is current running, the new thread will immediately pre-empt the running thread. This allows OS/2 to have near real time performance (Timur).

Whereas the scheduler uses a pre-emptive mechanism for ring 3 threads, is uses a co-operative mechanism for ring 0 threads. There are no time slices in ring 0. Threads in ring 0 also have an additional attribute, context, which determines what APIs are

 available to the thread. There are three contexts or modes; Init mode, Interrupt mode, and Kernel, the most common mode (Timur).

Symmetric Multiprocessing
Symmetric multiprocessing, SMP, is a computer architecture for systems with multiple CPUs. SMP provides faster performance by making the CPUs available to complete individual processes simultaneously. SMP has been supported by OS/2 since the release of OS/2 Version 2.11 for Symmetrical Processing, supporting up to 16 processes. With the release of OS/2 Warp Version 4 Advanced Server, Symmetrical Processing, up to 64 processes are supported. The differences between single processor OS/2 and OS/2 using SMP include using 2 APIs for controlling the CPUs, an extra index for DosQuerySysInfo(), and four APIs for handling spinlocks (Jorgensen, 1997). SMP must use threads and works best when there is little to no communication between threads. Some programs written for OS/2 cannot be adequately run under SMP, but these programs can be labeled as single CPU only through a special version of MARKEXE.

Spinlocks implements mutual exclusion by polling and they reduce the number of instructions needed and the time spent synchronizing. OS/2 SMP uses APIs for creating, acquiring, releasing, and freeing spinlocks. Disadvantages of the spinlocks used by OS/2 include no nested ownership, only one is owned at a time, the acquire spinlock disables interrupts and the release spinlock enables interrupts (Jorgensen, 1997). The four spinlocks used are called DosCreateSpinLock, DosAcquireSpinLock, DosReleaseSpinLock, and DosFreeSpinLock.

Threading
OS/2 is multithreaded. Programs in OS/2 can have subtasks that the operating system executes in the background, so that the user does not notice a decline in performance of the computer. The ratio of threads to processes is many to one, and the operating system utilizes preemptive multitasking, meaning that the operating system allocates CPU time to the applications that are currently being executed.

Data Structures for File Management

OS/2 utilizes a file system called High Performance File System (HPFS). This file system was developed as a means to solve the problems inherent with the older FAT file system developed by Microsoft. There are many features of this file management system that include intelligent caching, read-ahead, and write-behind. HPFS consists of not only an organizational tool for random block storage devices but it also includes a software component that translates file-oriented requests from applications to the device drivers.

The operating system creates a B- tree (Binary Tree) containing the directory entries in the system based on the filename length, time and date stamps, file size, file attributes, as well as a pointer to the file’s Fnode (Duncan, 1989). Using a data structure

of this nature allows the operating system to find and use directories and files much quicker; however there is an overhead cost to keep the tree maintained.

The main data structure of the HPFS is the Fnode. Each file located within the system is anchored to an Fnode that occupies a single sector and contains information about the files extended attributes, control and access history information, and access control lists, the length of the file and the first 15 characters of the name. These Fnodes are generally located adjacent to the file or directory they are representing (Proffit, 1995).

A call to a file contains 4 sectors of information. The first sector contains the actual Fnode of the file with the information provided above. The next three sectors contain the beginning of the actual file (Proffit, 1995). This allows the operating system quicker access to the information in the file so that it can begin working while the rest of the file is located and cached. Files are stored in contiguous sectors so that each file can be represented by where it starts, and how many sectors it occupies. The operating system can then use this information to determine where a file begins and ends.

The Fnode structure also has the ability to store up to eight extents (Proffit, 1995). An extent is a pointer to another part of the file that may not be located in the contiguous file due to fragmentation of the drive. Each extent contains the pointer to the beginning of the extent as well as the number of contiguous disk sectors that the extent occupies. These extents can store up to 16MB of file storage. If the file is larger than the maximum size an Fnode can access, then an ALNODE is created in place of the Fnode (Bridges).

The ALNODE is a much larger data structure that allows the storage of 40 extents or 60 further ALNODES. The ALNODE structures are also inserted into the B-tree as directory entries (Bridges).

The file management data structures in OS/2 and HPFS allow for a much quicker and efficient load of files and directory to the operating system. The B-tree increases the speed to locate directories and files on the system with the overhead cost of maintaining a large binary tree. The Fnodes are used to point to files and their information contained in extents on the drive. Fnodes contain valuable information for the operating system so that it will know how to handle a specific file or directory request.

Data Structures for Process Management

The data structures for process management and memory management are fairly inter-related as the process requests information from the operating system. Some of these data structures that are used are the process control block (PCB) and the processor save area (PSA) (Kogan).

The PCB is the main data structure used to access the per-processor data structures. This block of data contains the information that links the process with its page directory, Global descript table, TSS, and spinlock information (Kogan).

The PSA contains global kernel variables and per-processor data. This data structure is unique for each processor. It contains pointers to each processor’s PCB and other processor-specific data. It also contains information on the current process, the thread for the processor, and scheduling information (Kogan).

Data Structures for Memory Management

Memory management data structures in OS/2 are based off of pages of information. OS/2 offers a 32-bit linear memory address space. OS/2 then takes these linear memory spaces and constructs pages that can be manipulated by the operating system (Moylan). The operating system manipulates data structures called memory blocks, which consist of one or more memory pages. The smallest memory block must consist of at least one memory page. Even though there is a constraint that the minimum size of a memory block is one page, an application may sub-allocate a smaller memory object from a memory block that can range in size from 1 byte to the total size of the memory object (Developer Works).

Memory allocation is divided up into the 32-bit linear memory address spaces that are then partitioned out to applications requesting memory. The linear range is reserved for the application however it is not backed up by actual physical memory until the memory is committed. The act of committing the memory assigns the physical memory to the linear address range. The operating system does not allow the access of non-committed memory (Moylan).

The commitment and release of memory gives applications additional control over their process but require that the application maintain which pages of memory are committed to itself and which are not. Sub-allocation of memory from the heap requires that OS/2 tracks the commitment and release of this physical memory. This allows the application to sub-allocate memory without the added worry of remembering where its memory is located (Developer Works).
Memory Management in SMP

When working with multiple processors and processes, the system must duplicate several major data structures. Each processor has its own page directory, a global descript table, a task state segment, and a processor control block. OS/2 SMP kernel keeps the contents of the page directories consistent across all of the processors. When a page is accessed and modified, every processor flushes its TLB to provide memory coherency (Kogan).

The GDT contains special descriptors that all the operating system kernel to map data structures related to the currently running process. During a context switch, the operating system will update the base address of the descriptors so that the data structures

appear to be located in the same virtual space. The GDT page is committed on a per-process basis and it is shared among all the other GDTs (Kogan).

Conclusion
The innovations of OS/2 continue to influence the computing industry long after development has ceased. IBM’s following of dedicated users have suggested that an open-source version of OS/2 could be in the future if IBM allows its code to be distributed. IBM could once again contribute to advancing the state of the art. Users have suggested that Open Source OS/2 could be used as the basis for a 64-bit version. The future of OS/2 is not quite as dark as some have predicted.

Bibliography

Both, David. “OS/2 History.” URL: http://www.os2bbs.com/os2news/OS2History.html

Bridges, Dan. “Inside the High Performance File System.” URL: http://www.edm2.com/0411/hpfs2.html

Collins, Robert (1991) “Protected Mode Basics” URL:

http://x86.ddj.com/articles/pmbasics/tspec_a1_doc.htm
Duncan, Roy. "Design goals and implementation of the new High Performance File System. (includes related article on B-Trees and B+ Trees)." Microsoft Systems Journal 4.n5 (Sept 1989)

Fine, John (1999) “Protected Mode Computing.” URL:

http://my.execpc.com/~geezer/os/pm.htm
International Business Machine (1996) “OS/2 Developer Connection Device Driver Kit, Version 4.” URL:

http://www.warpspeed.com.au/cgi-bin/inf2html.cmd?..\html\book\ddk\PDRREF.INF
Jorgensen, Ivan Skytte (1997). “SMP- Symmetrical Multiprocessing.” URL: http://www.edm2.com/0507/smp.html
Kogan, Michael. “Retrofitting OS/2 for SMP.” URL: http://www.byte.com/art/9406/sec11/art2.htm

Meilinger, Frank (2000) “OS/2 Problem Determination and Analysis” URL:
http://rover.vistecprivat.de/~meile/warpstock_2000/PDA_en/index.html
Migrate your apps from OS/2 to Linux: Part2. Memory management, IPC, and file handling. (developerWorks, February 2004).

Moylan, Peter (2004). “Some fundamental OS/2 concepts.” URL: http://eepjm.newcastle.edu.au/os2/concepts.html

Necasek, Michael (unknown) “The History of OS/2” URL:

http://pages.prodigy.net/michaln/history/
Proffit, Brian. "OS/2's High Performance File System.(PC Tech: Tech Notes)(includes related article on binary tree data structures)(Column)." PC Magazine 14.n12 (June 27, 1995).

Sipples, Timothy (1995). “OS/2 Warp.” URL: http://www.mit.edu/activities/os2/faq/os2faq-toc.html

Tabi, Timur. “High Resolution Timing under OS/2.” URL: http://www.edm2.com/0601/timing.html
Unknown (2005) “Global Descriptor Table” URL:

http://en.wikipedia.org/wiki/GDT
Waldron, Ted. “User Level Prioritization and the Performance/Cost Impact Analysis on OS/2.” URL: http://www.prioritymaster.com/newpage11.htm
Wikipedia. “OS/2.” URL: http://en.wikipedia.org/wiki/OS/2
PAGE

