11

CS-450-2: The Mach Operating System
Fall 2005

Doug Hill

Liza Hill

Josh Mickley

Alex Nazari

Sanghee Park

Table of Contents

1. Introduction - p. 2
 2. Background - p. 2
 3. Memory Management in the Mach Microkernel - - - - - - p. 4
 4. CPU Scheduling - p. 5
 5. Management of Tasks and Threads - - - - - - - - - - - - - - - p. 7
6. Summary - p. 10
 7. Bibliography - p. 11

Introduction

The Mach operating system was developed by the school of computer science department at Carnegie Mellon University from 1985 to 1994. It was one of the first systems to use a microkernel.
The kernel is the core of the operating system and provides access to the machine’s hardware and computer processes. When UNIX was developed, it did not consider multiprocessing; the classic UNIX system had one kernel to load utilities and to act as a supervisor. As the computing models progressed, it was difficult for the monokernel to support a multi-processor environment. The monokernel would have to be modified to allow interruptions when it is called by another processor while in the run state. This modification becomes more extensive when the kernel has expanded to include millions of lines of code. (For example, Linux has over four and a half million lines of code.) Mach was developed to find a better way to support communication between multi-processors.
A microkernel uses system calls to implement minimal operating system (OS) services, including thread management, address spaces, and interprocess communication (IPC). All other services that the kernel normally provides are implemented in user-space programs called servers. Mach was designed to support multiprocessing throughout the system; it can be run on a single processor, or on systems incorporating thousands of processors. It is flexible enough to support shared-memory systems, and will also accommodate systems that do not share memory between processors.
Mach’s approach was to implement as few OS services as possible in the kernel, while maintaining that the kernel would be powerful enough so that other features could be implemented at the user level. The kernel was intended to be kept simple with the emphasis on communication facilities. There was a single communication mechanism that handles all requests to the kernel and all data movement among the processes. Protecting the mechanism will therefore protect the entire system, and optimizing communication through the single mechanism will optimize communication throughout the entire system.

The Mach OS uses an object-oriented approach; the data itself or the data operations are encapsulated into an abstract object. Objects may reside anywhere in the system, transparent to the user. The internal data structures and the operational details are hidden. Internal operations can be changed without changing the interface definition, so the changes do not affect other aspects of the system.

Background

Mach is an object oriented operating system kernel. Mach concepts were conceived in 1975 at the University of Rochester in a Rochester Intelligent Gateway (RIG). Berkeley had by this time completed BSD 4.2 with its own BSD kernel.

RIG was a modular operating system that was designed to communicate a collection of processes through a message-passing protocol which could function across a network. In 1979, Richard Rashid, from the RIG project moved over to Carnegie Mellon University and developed an operating system that improved upon RIG, called Accent. Accent added an innovative virtual memory system, transparent network messaging and other features to RIG’s modular base. Although it added improved features, it still ran only on special hardware, and was missing some important modern OS features. Therefore, they moved to Mach for the next project.

The Mach project started in 1984. With encouragement from the US Military, CMU improved operating systems including several goals listed as below.

· Providing interprocess communication functionality at the kernel level and using it as a building block for the rest of the system.

· Virtual memory support provided by the kernel and by user level servers.

· Kernel level support for light-weight threads.

· Support for closely and loosely coupled multi-processors and a variety of different commercially available workstations.

· Micro-kernel architecture limiting the functions supported by the micro-kernel and enabling multiple user level servers to support various Application and Programming Interfaces.

· Maintaining at least one Unix-style API to enable the Mach system to support all the everyday uses of the project members and other researchers.

· Distributing this technology to other researchers and commercial sites to use as the basis for further research or products.

However, the key goal of Mach was to be a distributed system capable of function on various different types of hardware. Although CMU added in some kernel code from BSD 4.3, they tried to build an operating system with their own ideas at that time. And then eventually, they made a powerful, fast and efficient kernel on its own, which became the foundation for new non-BSD operating systems.

In 1987, Mach was officially released the first versions, Release 0 and Release 1. It included task and thread support. After these two releases, Release2 came out with compatibility with the corresponding BSD systems by including much of BSD’s code in the kernel. When Mach 3 came out, it moved the BSD code outside of the kernel. For a period of time starting in 1989 the Open Software Foundation (OSF) used Mach 3 as the basis for its new operating system, OSF/1. In the later half of the 1990s both CMU and OSF stopped further Mach development. But the University of Utah developed version 4, the latest version of Mach.

Because of Mach’s useful functions and features, various versions of Mach were used for commercial products. The first release of NeXTSTEP used the Mach 2.0 kernel, with some features added by NeXT. The NEXTSTEP AND OPENSTEP added more features on later releases to the kernel, some adapted from Mach2.5. Apple’s Rhapsody used much of the OPENSTEP architecture and is based on Mach2.5. OSF/1 and MkLinux from the Open group are also based on the Mach 3.0 microkernel.
More commercial products that are related to the Mach include as below:

· Encore's Multimax

· Omron's Luna

· MachTen for the Macintoshes

· DEC's OSF/1 for the DEC Alpha

· IBM's OS/2 for the RS6000 based machines

Although research on Mach at Carnegie Mellon end in 1994, the Open Software Foundations’ Cambridge and Grenoble Research Institutes continued to improve Mach’s structure.

Memory Management in the Mach Microkernel

Memory management and virtual memory in the Mach microkernel are realized through the use of one of its most fundamental abstractions: the memory object. The memory object acts as an intermediary between a task and a secondary data store. Each memory object has a memory manager (pager) that presides over it which may be located in the microkernel or exist in user space. Memory objects also have an associated port and a reference counter. The port is used so that it may receive messages from other entities in the system. The reference counter provides a means to see how many other objects are currently referencing it. If no other objects are referencing the memory object, the system removes the object since it is no longer needed.

Virtual memory in Mach is implemented using 4 primary data structures: a resident page table, an address map, a memory object, and a pmap (Rashid, et al.). Of these, the pmap is the only component that is hardware-dependent. Conceptually, the pmap provides an interface between the underlying hardware and the machine-independent portions of the virtual memory subsystem. Its purpose is to manage virtual to physical address mappings. An interesting characteristic of the pmap is that it is not necessary to keep track of all mappings within the system. Typically, the pmap will only keep track of mappings to the kernel and the most frequently referenced task addresses. Whenever information other than this is needed, the pmap is able to reconstruct it at fault time from Mach’s machine-independent data structures. All of the functionality of the pmap is contained within one code module, pmap.c, which makes it easily portable onto different architectures.

The resident page table keeps track of physically allocated pages and maintains three data structures crucial to its operation. The first structure, a memory object list, is a list of that links all pages associated with a particular memory object. The second structure maintained within the resident page table is the memory allocation queue. It keeps track of all free, reclaimable, and allocated pages for paging purposes. Lastly, a hash bucket is used to associate an offset value to every memory object. The hash bucket allows for rapid lookup of physical pages. Each entry in the table is indexed by its physical page number and may be linked to any of the previous three data structures.

Mach’s address map is a kernel-maintained doubly-linked list of allocated virtual addresses. Each node of the list represents a single entry which maps a region of virtual memory address space to part of (or all) of a memory object. Using this design, two tasks are able to share the same segment of a memory object (Rashid, et al.). This innovative alternative to physically copying data from one memory location to another was first pioneered in Mach’s predecessor Accent and is known as the copy-on-write strategy. The idea behind the copy-on-write technique is that as long as the section of memory is not being written to, there is no need to physically copy it. Therefore, action is only taken if one of the two tasks attempts to modify the contents of memory.

As mentioned above, memory management in Mach is achieved through the use of a “default” pager found within the kernel, or more commonly, is handled in a user-defined pager that exists in user space. The default pager is only activated under two conditions: a) a user-defined pager does not exist and the default pager is therefore the only pager in the system or b) the user-defined pager is not functioning properly. The latter situation is recognized by the kernel when the set size of the user-defined pager is not reduced within a certain time frame and it takes action.

Paging is handled by an internal daemon known as the pageout daemon and relies on a slightly modified FIFO paging algorithm (Silberschatz et al.). When a page is selected to be paged out, it is “passed of” to the default or user-defined pager where the actual paging out occurs.

CPU Scheduling

The Mach OS is a multiprocessing multithreaded, resources are allocated to processes but CPU scheduling are in terms of threads. The Mach OS implements both the time-sharing scheduler and other scheduling techniques. A time-sharing scheduler in the Mach OS allocates system resources so that competing processes receive approximately equal portions of CPU time. Each process is given a maximum execution time. A process’ priority decreases as it consumes CPU time. The scheduler always favors higher priority processes. A downside of this system is that on a heavily loaded system, with many jobs with short execution times, the priority of a lengthy job can decrease until little or no further CPU time becomes available. To deal with this problem of jobs having a very low priority, the scheduler intermittently elevates permanently depressed priorities. A process’ priority also increases through certain interactive events such as I/O completion.

Another elevation technique used to raise the priority of a job is based on expected usage functions that define the goals for processor usage based on the elapsed time of a job in the system. The goal function determines the time it takes for the job’s current processor usage to reach the critical time. The priority assignment mechanism for the Mach OS bases the priority of a job on the difference between the elapsed time and the critical time. The larger the difference between the elapsed time and the critical time, the higher the priority.

The Mach scheduler optimizes the context switch time with multiple threads in a task. There are fourteen possible scheduling states in the Mach scheduler (Hwang, 1993). There are four states in which a thread is executing on a processor. There are five different states in which a thread is swapped out. In this state the thread’s kernel stack may not be resident in memory and must be forced into memory before the thread can be executed. The other scheduling states represent a thread that has been swapped in but not actually running. A thread in one of these states may be waiting for an event, suspended by the kernel, or queued to run on a processor.

A special feature in the Mach OS is that the operating system allows the kernel stacks of inactive threads to be swapped out to free up their memory resources. A kernel stack is an important resource associated with each thread. The stack is used by the kernel to execute operations on the thread’s behalf. The process of swapping out a thread consists of making its stack memory eligible for the normal page out mechanisms. The corresponding process of swapping in a thread consists of forcing its kernel stack into memory, and constructing it so that it cannot be paged out.

When a process is given control of the CPU, various hardware registers must be restored to the values they had when the process was suspended. Resetting the values when a new process takes control of the CPU is called a context switch. Context switching is implemented in the Mach scheduler using the concept of a time quantum. A thread is given a time quantum at the start of its execution. Periodic clock interrupts decrement this time quantum. A rescheduling check is done when the time quantum expires. If there are other executable threads having higher priorities, then a context switch is made to the thread with the highest priority.

The run queue in the Mach scheduler is implemented with 32 queues corresponding to priority levels 0 to 31, where lower priorities have higher numbers (Hwang, 1993). Each thread is assigned a priority and a policy. The priority indicates the probability of the thread running, and a thread with a lower priority number is more likely to run. Whenever a thread times out or blocks, the thread with the highest priority will be run. In order to prevent starvation, priorities will be reduced when they age, thereby preventing a high-priority thread from keeping the processor from a lower-priority thread. Gang-scheduling should be based on the fairness policy in a time-sharing scheduler.

The kernel maintains two queues, a local queue and a global run queue (Hwang, 1993). The local queue is used by threads that have been bound to a specific processor. When a new thread is needed for execution, each processor examines its local queue. If it is empty, the processor examines the global queue. Then it dequeues and runs the highest-priority thread. If both queues are empty, the processor becomes idle. An idle processor is assigned a dummy idle thread. Idle processors are dispatched by a mechanism that bypasses the run queues.

The Mach OS has a feature that allows the user to supply hints to the scheduler about scheduling decisions. Although the design of the scheduler in the Mach OS implements the scheduler in the kernel, users can provide hints based on local information. Applications using more virtual than physical processors can benefit from user input to scheduling decisions. The user on the Mach OS may have hints about which virtual processors should or should not be running. The Mach scheduler accepts hints that usually contain local information about a particular thread so that users can avoid maintaining overall status information on their applications. Local hints take advantage of scheduling information that is provided to the user. The information that is provided to the user may be that the current thread cannot make progress and information about the identity of some other thread that should be run instead.

There are two classes of hints that the Mach scheduler recognizes; discouragement and handoff scheduling (Hwang, 1993). Discouragement hints are hints that suggest that the current thread should not run by giving up the processor to any other thread if possible, by temporarily depressing the priority of the current thread, or by blocking the current thread for a specific period of time. Handoff hints are hints that indicate a specific thread should run instead of the current one. If that thread is able to run but not currently running, the processor will be directly “handed off” to it, by bypassing the scheduler’s normal thread selection algorithm . The advantage of using handoff scheduling is that the desired thread runs immediately if possible. Another advantage is the context switch is more efficient because the code path through the scheduler is shorter. An example of using discouragement hints would be in the implementation of shared-memory synchronization. The second class of hints hands off the processor to the specific thread, bypassing the internal scheduler mechanisms. Handoff hints can be used when a low-priority thread holds a lock needed by a higher-priority thread (Hwang, 1993). The higher-priority thread can detect this situation and hand off the processor to the other thread so that the lock is released in due time. Scheduling hints benefit the performance in multiprocessor systems.

Management of Tasks and Threads

The Mach OS works through tasks and threads; the concept of the process corresponds to a task. A thread is an unit of code that is running on a processor, and a task is a set of resources to run threads. The development of Mach was one of the sources that contributed to the modern concept of processes and threads.

A task includes a virtual address space and protected access to system resources through ports, and it may contain one or more threads. It provides the basic unit of resource allocation.

A thread is a sequence of instruction executions and runs in the context of the task which provides the address space. All the threads within a task share the task’s resources including ports and memory. Mach does not implement processes; it implements tasks in place of processes. A task has a single thread of control. The use of threads supplies a lightweight model for context switching. This becomes important when passing messages between multiprocessors; multiprocessors can pass messages very fast because they are copying from memory to memory. Thread-based applications accommodate the speed of message passing in a shared memory multiprocessor system.

A port is a communications channel protected by the kernel and is the basic object-reference mechanism in Mach. The kernel protects the ports by managing port rights; a task must have a port right to send a message to a port. All the communication is done through sending messages. An operation may be invoked by sending a message to a port associated with an object. If there is no thread readily available to receive the message, the message is then placed in a queue at the destination port. If the queue becomes full, then the sender may wait for an open slot in the queue, abort the message, or allow the kernel to deliver the message. A port has the ability to allocate a new port for a specified task or to create a backup port if a task terminates. When a task is initially created, the kernel creates several ports to accommodate it. A single port represents the task in calls to the kernel, and it is returned by a function called task_self. If the task needs to allocate a new port, it uses a function called port_allocate. There is also a function called thread_self that is implemented in the creation of new threads.

Ports may be grouped together into a port set. A port may only belong to one set at a time. Ports that are within a set do not directly receive messages; the messages have to be passed through a queue for the port set first. A thread is capable of receiving messages for an entire port set, and therefore a thread may service several ports. For each port, only one task will have the right to receive on that port, but many tasks may have the right to send to that port. A task has the ability to allocate ports for any object it owns. Each message that is received identifies the port that received it and the object it was assigned to.

The Mach process manager includes two different levels, the task management level and the thread management level. Primitives at the task management level are used to create, destroy, suspend and resume tasks. A newly created task may inherit the parent’s resources if desired, but passing resources to the child task is not required. While a task is active, all the threads in the task are available, but when the task is suspended, all the threads included are no longer available. There is a system in place to count all suspend and resume calls to ensure that threads can not be run while the task is suspended. While the task is active, the threads may be suspended or resumed.

Primitives at the thread management level include fork(), join(), detach(), and exit(). All the threads within a task share a common address space, so they also have common global variables. The detach() command is used to separate a parent from a child, so that the parent can exit and allow the child to continue to run.

The microkernel scheduler only manages threads, it does not manage tasks. There are many more threads to manage than there are tasks. Also, the Mach OS has the capability to address multiprocessors. Each processor and each thread is assigned to a processor set. There is a processor set scheduler that assigns each thread from an active task to an available processor in the processor set. There is a multilevel queue that schedules threads to processes according to priorities. Some threads have to be run on a particular processor, such as threads assigned to I/O devices. When a processor becomes idle, it selects the highest priority thread that it can run from the available run queues. If the local queue is empty, the scheduler then selects a thread from the global queue that can be run on the processor.

All communication between threads is done through messages. A message includes a fixed-length header and a typed collection of data objects and may contain actual data or a pointer to out-of-line data. The header includes the destination’s port name, the name of the port to which a reply should be sent, and the length of the message. The data is collected in data sections according to an associated type so that the receiver can unpack the data correctly. The kernel searches the message for particular data that it needs, such as port information that it must process, or pointer to out-of-line data. Port rights are passed in messages and this is the only way for threads to communicate. A port right includes a port name and the capability to send or receive. Threads may not communicate through shared memory. A memory object is a source of memory. Tasks can map an object into their address spaces to access a memory object.

One of the strengths of Mach is that it connects memory management with interprocess-communication. Each is used in the implementation of the other. The heart of the kernel provides a general-purpose, extensible merger of memory and messages. This helps in the implementation of the kernel and accommodates distributed and parallel programming. A memory object is represented by a port and messages are sent to the port to request operations. Memory objects can reside on remote systems and can be accessed transparently. If it is possible, pointers to shared memory can be moved rather than the objects themselves. The contents of memory objects are cached by the kernel in local memory.

Mach uses virtual memory management techniques. The Mach kernel is message based, therefore it is necessary that message handling be done as efficiently as possible. Interprocess-communication can be problematic because it tends to involve high overhead. Mach uses virtual memory remapping; the message transfer modifies the receiving task’s address to include a copy of the message contents, so that the actual copying of the data is avoided or delayed. This allows for greater flexibility and generality in memory management and increases performance.

The Mach OS includes the Network Message Server, or NetMsgServer. The Mach system was designed to be an object-oriented system, with all of the objects being location independent with the location being transparent to the user. The location-transparent naming system that interprocess-communication between computers is provided by the NetMsgServer. It is a networking daemon on the user level that forwards messages between hosts. The NetMsgServer creates a network-wide name service so that tasks can register destination ports for tasks on other computers within the network. It also manages a database of send and receive port rights that have been transferred among computers on the network. If a message needs to be sent to a port that is not on the kernel’s computer, the kernel can access it from the NetMsgServer. The concept of a NetMsgServer is intended to be protocol-independent, and various NetMsgServers have been built that use a variety of protocols. When a message including a send right is sent from one computer to another, the NetMsgServer on the destination computer creates a new, proxy port to represent the original port at the destination. The messages are then forwarded transparently to the original port. Sometimes data is recorded in different formats by computers that have to communicate across a network; in this case, the NetMsgServer has to translate the data from the sender’s format to the receiver’s format.

The newer versions of Mach include support for No Remote Memory Access (NORMA) multiprocessors which implements much of the functionality of the NetMsgServer directly in the kernel, which eliminates the need to copy messages between the NetMsgServer and the kernel. The NetMsgServer may still be used on a network to communicate between computers that have a NORMA multiprocessor and those that don’t.

Threads within the same task may be synchronized in Mach using interprocess-communication. If a thread needs to use a resource, it can execute a receive call and wait to get a response that the requested resource is available. After using the resource, the thread can send a return message to the port indicating that the resource is available. However, this method can not be used for synchronization between tasks, because only one task can have receive rights on each port.

Summary

In 1995, the Mach project was concluded because of the lack of interest in the development of the microkernel in the market. The Mach Operating System contributed to the development of multi-server concept in a computing system, however, commercially it was not successful due to the overhead of the interprocess communication. In a user-space system, the caller asks the interprocess communication system to run the kernel. This causes a context switch and memory mapping. The kernel then examines the caller’s rights to call the server causing another mapping into the server’s memory. The process has to repeat to return results, which results in 4 memory mappings and context switches for each service call.

The development of the Mach system began to experience set backs; some of them were related to performance issues. When physical memory ran low and paging had to occur, this was a problem in Mach because the programmers did not have direct experience with the kernel to know what was to be used, and the kernel had no real idea of the OS memory content. Later, a simple pager was introduced, but it required an expensive interprocess communication, which was not cost-effective.

When Mach was developed, it was based on the prediction that multi-processor machines would become widely used, but they did not become as popular as the Mach developers had anticipated. Microkernels in general are still not widely used. The developers of Mach have moved on to pursue other projects. One of the key developers, Richard Rashid, currently works for Microsoft research, and another important developer, Avie Tevanian, works for Apple Computer. Mach had made an important contribution. It was an early example of a microkernel. Mach development was incorporated into NEXTSTEP, OPENSTEP, and Mac OS X.

Bibliography

Hwang, Kai (1993). Advanced Computer Architecture: Parallelism, Scalability, and

Programmability. McGraw-Hill, Inc. QA76.9.A73H87 1993. 92-44944. ISBN 0-
07-031622-8.

Nutt, Gary (2004). Operating Systems. Boston, MA: Pearson Education, Inc.

QA76.76.O63N89 2003; 005.4’3-dc21; ISBN 0-201-77344-9.

Rashid, R., Tevanian, A., Young, M., Golub, D., Baron, R., Black, D., Boloaky, W., &

Chew, J. (1987). “Machine Independent Virtual Memory Management for Paged

Uniprocessor and Multiprocessor Architectures.” URL:

www.cs.nyu.edu/rgrimm/teaching/readings/portable-vm.pdf.

Silberschatz, A., Galvin, P. B., Gagne, G. (2005). Operating System Concepts, 7th

Edition, Appendix B. URL: www3.interscience.wiley.com:8100/legacy/college/

silberschatz/0471694665/appendices/appb.pdf

Wikipedia (2005). “Mach Kernel.” URL: http://en.wikipedia.org/wiki/Mach_kernel
