Mac OS X

CS-450-1: Operating Systems
Fall 2005

Matt Grady – Mike O’Connor – Justin Rains

Table of Contents
Topic

Page
Introduction

1

Overview

1
CPU Scheduling

2
Processor Modes and Management

2
File Management

3
Deadlock

5
Memory Management

5
Conclusion

7

Introduction
The purpose of this report is to offer some information about the inner workings of the Mac OS X from Apple. Topics discussed include how the operating system deals with deadlock, schedules its processes, uses its processor modes, and the management of files and memory.
Overview
Mac OS X v10.4, nicknamed “Tiger,” is the latest version of the Apple’s operating system designed for use by their Macintosh computers. While it technically could be viewed as the fifteenth installment of the operating system, it is more commonly seen as the fifth version of the OS X architecture, as the OS X timeline is largely independent of the previous versions of Apple’s operating systems. The inner workings of OS X are based on a UNIX-like core, and are represented on the surface with a very friendly graphical user interface dubbed Aqua.
Tiger was originally introduced by Apple CEO Steve Jobs in the summer of 2004, and released into the market in April of the following year. While the underlying core was not significantly different from the previous versions of OS X, several improvements were made. On the surface, the introduction of Spotlight was the most strongly touted feature. Spotlight is a very powerful searching tool, capable of scanning the meta-data of all the files on the computer to quickly and efficiently find any bit of information you may be looking for, whether it be an email address from your contacts or an image file that you have forgotten where you put it. Another hyped up addition was Dashboard, an applications layer that houses desktop “widgets,” or tiny applications designed to perform small tasks. These range from basic calculators to dictionary lookups to stock tickers, and they can all be brought up easily using Dashboard.
Even if more of the changes were on the surface, improvements were made under the hood as well. The kernel was upgraded with a more optimized resource locking ability, and a service management framework named launchd was added to greatly speed up boot times. Three new APIs – Core Image, Core Data, and Core Video – were introduced to optimize and increase the power of image, structured data, and video processing respectively. Memory support reached a maximum of 4GB of RAM, and dual-core processing ability was greatly increased.
Though the OS X upgrade was generally met with praise, there were still some problems to be found. Before the operating system is even installed, the user will have to have a bare minimum of 256MB of RAM, and speed is relatively poor unless at least 512MB is installed. While Spotlight was viewed as a powerful searching tool, it can require extra work for the user, who needs to take care to mark the necessary meta-data for the files in order for the program to work at its peak. Some Dashboard widgets that are location-specific (such as weather reports) suffered from poor localizations, making them almost useless outside of North America. Perhaps the most real world-applicable issue is that for its cost of $129, there is as a whole a lack of must-have improvements.
Despite the minor flaws, Tiger has been a success for Apple in its short time on the market. After only six weeks on the market, over two million copies of the operating system had been installed, which accounted for 16% of the total Mac market. Apple estimates that by summer of 2006, this percentage will rise to 50%, which would make it one of the most quickly adopted mass-market operating systems in the history of computing.
CPU Scheduling

Mac OS X scheduling is based out of the Mach component of XNU, which in turn is based on a series of priority queues that are each handled in their own individual way. There are four levels of priority: normal, system high, kernel mode only, and real time. Normal is used for all normal threads created by applications running on the computer. System high prioritized threads are also used for regular application threads, but in the event that system resources start to become scarce, they will receive priority over all normal prioritized threads in the attempt to garner resources. Kernel mode threads are those created specifically inside the kernel, and will always have resource priority over all other threads on the system. They are normally required for the system to be running properly and thus can’t ever be deprived of their necessary time quanta. Real time threads are intended for soft real time situations, where a process needs to have control of a very specific amount of the total clock cycles available to the computer. While these have a lower priority than the kernel mode threads, if the processor anticipates having enough resources available for all kernel mode threads, then it can allocate a specific amount of the clock cycles for real time threads.
No process is absolutely fixed in its priority once it is first assigned, and the non-kernel priorities are often switched around as needed by the system. A common example of changes is when a real time thread starts demanding more clock cycles than can be consistently given, it will often be dropped down to system high or even normal priority.
Threads that require heavier use of the processor are generally given the lowest priorities, so as they don’t dominate the computer’s resources. Doing such prevents bottlenecking by allowing the lighter threads to receive higher priorities that let them zip through, not constantly having to wait for the heavier threads to finish their work.
Processor Modes and Management

Mac OS X runs in either user mode or supervisor mode. Supervisor calls are made through the Mach component of XNU (X is Not UNIX) using a message passing approach. The Mac OS X does not contain a trap table so applications should not attempt dispatch calls through the trap table. Mac OS X uses message passing to invoke OS processes. Messages in Mach consist of a header and a body, which is of a variable-length. These are passed from a thread to the Mach port representing whichever task of the OS it is that provides the particular service the application needs to access.

Writing in an interrupt context is generally not needed when writing code in Mac OS X. Only motherboard hardware requires interrupts, so in that case a coder may need to write code in an interrupt context. Since the interrupt latency is tied to the time spent in supervisor mode, Mac OS X has attempted, through interrupt service threads, to minimize the latency. What the operating system does, instead of dropping into supervisor mode and turning interrupts off, is call a generic interrupt handling routine to clear the interrupt bit. The generic interrupt handler then calls a device-specific interrupt handler which notifies an interrupt service thread that an interrupt has occurred. Interrupt service threads are threads that run in the kernel space and are dedicated to handling I/O that is triggered by an interrupt. Because the majority of the interrupt procedure is happening in a thread context, code actually executing in an interrupt context is very small and it is possible to have an interrupt occur while a device driver is executing.

Darwin, the open source part of the Mac OS X kernel, includes subsystems to implement functionality of the operating system. One of these subsystems is the I/O Kit, which is the device driver subsystem. This is where the support for shared memory multiprocessing (SMP) is. SMP (Mac OS X calls this symmetric multiprocessing) employs multiple processors, connected either directly or through primary memory, or both.

In Mac OS X, applications take advantage of multiprocessor systems by splitting the application into independent threads, which can be processed separately. In Mac OS X, these threads are called tasks. Mac OS X uses critical sections (called critical regions by the OS) to lock parts of the shared memory that are needed by a thread during a particular interval of time. This way, no other part of the same program running in a different thread (and possibly being executed by a different processor) can access the same part of memory that is being used by another.

Mac OS X has a Multiprocessing Services API which includes support for preemptive tasks, critical regions, semaphores, processor availability, and other features which help application programmers take advantage of the operating system’s support for multiple processors. Programmers can set the relative priority of their tasks through the interface (this is not system-wide priority, but relative priority internal to the application and compared with other tasks in the application). The API provides a way to create, delete, enter, and exit critical regions and methods to create, remove, signal and wait on semaphores. Furthermore, the API has methods to query the host computer to see how many processors there are and which are available.

Dealing with processes and process states in Mac OS X is done similarly to Mach 3.0. Every time a process is created, a corresponding Mach task is created and associated with it. The Mach tasks are represented by Mach ports. Essentially, messages directed at that port are used to determine and control the process state. When the process terminates, so does the Mach task and the port associated with it. This way, other processes can detect the process exits by registering for Mach port notifications.

File Management
The default file system used in Mac OS X is derived from the BSD operating system. It inherits the file permissions model, symbolic links, and user home directory concepts from BSD and is called the Unix File System (UFS). Mac OS X does, however, also provide support for the Mac OS Extended format (HFS+), the Network File System (NFS), ISO 9660, MS-DOS, the Common Internet File System (CIFS or SMB), AppleTalk Filing Protocol (AFP), and Universal Disk Format (UDF). The AFP is simply the file sharing protocol used in an AppleTalk network, CIFS is the Microsoft standard file system format, ISO 9660 is the standard format for CDROMS, and the NFS is the industry standard for mapping network drives onto public virtual drives.

The Unix File System uses a Virtual File System (VFS) capability which can add compatibility with other types of file systems. Kernel extensions would need to be used in conjunction with the VFS in order to allow the OS to boot from a different file system. File system operations, such as mount and unmount, are called through the VFS. VFS_MOUNT and VFS_UNMOUNT are examples of operations through the VFS to mount and unmount (respectively) a drive.

The structure used in Mac OS X to represent a file or a directory is the vnode structure. Every file and folder in the system, including the root directory, has a vnode allocated to it. Vnode Operation (VOP) calls are used to access the operations available on folders or directories such as open, close, read, write, etc. Examples of calls to the VOP are VOP_OPEN, VOP_CLOSE.

HFS+ is preferred file system for Mac OS X and is the successor to the older HFS which allows 64 bit length files as opposed to only 32 bit; it uses Unicode for naming files and permits filenames up to 255 characters in length. The major detraction of HFS was the limited disk size due to its 16 bit allocation mapping table (essentially, with large disks, files take up more space than they should). HFS+ uses 32 bits and can support larger drives. HFS+, not like UFS, is not case-sensitive.

The File Manager in Mac OS X handles the organization, reading, and writing of data to disks. Carbon is a subsystem of the kernel that contains the File Manager. The default volume format that Carbon uses is the HFS+. The file manager contains various functions specific to each task in the following table (there are 47 general tasks, each including multiple functions. Only the most commonly used are included here).

	Accessing Information about Files and Directories

	Allocating File Blocks

	Controlling Login and Directory Access

	Copying and Moving Files

	Creating a File System Reference

	Creating and Deleting Forks

	Creating and Deleting Directories

	Creating File System Specifications

	Creating and Deleting Files

	Getting and Setting Volume Information

Many other functions and tasks are included in the File Manager to help application programmers manipulate the file system.

Deadlock
Deadlock is mainly dealt with through avoidance in OS X. One strategy listed is to reduce the granularity, or amount of code affected, of a lock. This can be done by breaking one main lock that may cause deadlock up into multiple smaller locks, such as with a list of buffers. This reduces the likelihood that all threads will attempt to access the same lock at the same time. Similarly, keep the amount of code accessing the lock to a minimum by only holding the lock for only the exact time needed to do the IO. Another strategy is to eliminate buffers through message passing, or InterProcess Communication (IPC). IPC is a mechanism where the operating system directly copies data from one process's address space into another's. Apple also suggests using a total order for the read-write locks in a system as a form of deadlock prevention, although this is referred to as "rather extreme" (Apple, 2005b).

Memory Management

Prior to Mac OS X, memory was allocated to processes at load time. In these earlier versions, Virtual Memory could only be turned on manually as an option (Ohio State, 2005). Users manually set the preferred or minimum amount of memory to be used by each process. Memory fragmentation was a large problem; after a system had run several applications, the OS may refuse to load a process due to lack of memory, even though the total amount of free memory was adequate. This was due to both internal and external fragmentation; there was not a single block of RAM large enough for the entire process. In addition, crashes of one process's memory segment could overflow into another process's memory segment and cause the second process to crash as well. This chain reaction would continue until the entire system had crashed (Apple, 2005a).
Beginning with OS X, the memory model Apple used was based on the one used in the Mach 3.0 kernel. This is implemented with virtual memory which is both paged and segmented. The working set algorithm is used for determining page faults. The majority of a process's address space is initially loaded into virtual memory, and is only brought into RAM as needed (Apple, 2005b).

The Virtual Memory (VM) system, which is machine independent and resides in the kernel, is the overall memory manager and contains the machine dependent Process Mapping system (pmap), which handles the actual physical page allocations via page tables, segmentation, Translation Lookaside Buffers, and other techniques, depending on the hardware. The VM system maintains three page lists: the "active list", which holds the identities of recently accessed pages, the "inactive list", which holds the identities of pages in RAM, but which has not been recently accessed, and the "free list", which contains a list of unused pages of RAM. The VM system attempts to maintain a certain number of pages in the free list by swapping pages from the inactive list to virtual memory (Apple, 2005c).

The basic unit of the system is the Virtual Memory (VM) object, which refers to a group of "memory objects"; which may comprise a segment of a process, or the entire process. A memory object is either a page, a set of pages, a stack, or a file. The VM object may also point to another VM object, which is called "shadowing." The VM object resides in kernel memory as part of the VM system (Apple, 2005b).

Fields of the VM Object

	Field
	Description

	Resident pages

	A list of the pages of this region that are currently resident in physical memory.

	Size

	The size of the region, in bytes.

	Pager

	The pager responsible for tracking and handling the pages of this region in backing store.

	Shadow

	Used for copy-on-write optimizations.

	Copy

	Used for copy-on-write optimizations

	Attributes

	Flags indicating the state of various implementation details.

 Figure (Apple, 2005c).

The "pager" field of the VM object may be "default", "vnode", or "device." Default refers to regular paging of process address space, and the vnode is for file IO. Device is used for communicating with memory mapped into caches of devices other than the hard disk (Apple, 2005b)...
Shadowing is a form of segmentation where the original copy of an address space being used by more than one process or thread is referenced by a pointer for all other users. A VM object which refers to another VM object is called a "shadow object." Each subsequent identical shadow object refers to the most recent identical shadow object, forming a "shadow chain." Shadow objects use a form of shared reading known as copy-on-write, in which shadow objects remain shadow objects until their calling process or thread requires a divergent write, resulting in their being given their own copy of the page within the referenced VM object (Apple, 2005b).

The VM system also contains a "memory map" for each process. This is a doubly linked list of references to VM objects, as well as a number of other descriptors. These include the "protection" field, which determines whether a process can write to or read from a particular memory object. The protection field is set by the process. To overcome security loopholes, there is also a "max_protection" field set by the parent process which sets the maximum level of access possible for the child's protection field (Apple, 2005b).

The algorithm for allocating memory to an existing process begins with the "malloc" system call. This call either finds free space on an existing page, or calls the "vm_allocate" system call (Apple, 2005c). The vm_allocate call has six steps:

1) A memory map entry is created

2) The memory range is assigned a pager

3) A VM object is created and initialized

4) A page is acquired from the free list and overwritten with zeros

5) The page is given a reference in the VM object's list of resident pages

6) pmap takes the page from the hard disk and puts it into RAM

.

There are two types of memory faults in the OS X: soft faults and hard faults. Hard faults are the regular page fault whereby a region of memory is on the hard disk and is attempted to be accessed. A soft fault is when the needed segment of memory is already in the RAM, but is not part of the address space of the calling process. For either type of fault, the VM system locates the map entry and VM object for the target page. If a soft fault is generated, the VM system creates a shadow object and adds the pages to the active list. If a hard fault is generated, pmap is called to swap the target pages into RAM and they are added to the active list (Apple, 2005c).

The Universal Page Lists (UPL) are data structures used to communicate with the VM system. The lifecycle of a UPL starts with its creation on top of a VM object. The UPL is initialized with that VM object's descriptors. The UPL is then altered in some way. Finally, the changes are either forced back onto the VM object or aborted (Apple, 2005b).

Conclusion
Hopefully, discussion of topics such as memory management and CPU scheduling have helped given you a better understanding of just how the inner workings of the Mac OS X v10.4 operate. While this report has only scratched the surface, the information conveyed should help give a beginning appreciate for the operating system.

Bibliography

Apple Computer, Inc. (2005a). "An Overview of Memory Usage." URL:
http://homepage.mac.com/simx/mughelp/English/overview.html

Apple Computer, Inc. (2005b). "Kernel Programming Guide." URL:

http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/index.html

Apple Computer, Inc. (2005c). "Memory Management in Mac OS X." URL:

http://developer.apple.com/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html#//apple_ref/doc/uid/20001880-119066-TPXREF102
Apple Computer, Inc. (2005d). "Overview of Scheduling." URL:

http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/scheduler/chapter_8_section_2.html

Ohio State University (2005) "How is Virtual Memory Handled in Mac OS X?" URL:
http://8help.osu.edu/1261.html
Wikipedia (2005). “Mac OS X” URL:

http://en.wikipedia.org/wiki/Mac_os_x

