Mac OS X

December 5, 2005

Fall 2005 Term Project

CS450 Operating Systems (Section 2)
Darrell Hall, Ryan Lanman, Chris Sanford, John Suarez

{halldl, lanmanrm, sanforcp, suarezjg}@jmu.edu

Table of Contents
1. Introduction

2
2. Overview

2
2.1. A Brief History of OS X

3
2.2. Mac OS X Environment

3
2.3. State-of-the-Art Advancement

4
2.4. Success of Mac OS X

4
2.5. The Good and the Bad

4
3. Processor Overview

5
3.1. Processor Modes

5
3.2. Privileged Instructions

5
3.3. Uniprocessor and Multiprocessor

5
4. CPU Scheduling

6
5. Process States

7
6. Memory Management

7
6.1. Memory Model

7
6.2. Virtual Memory Implementation

8
7. Conclusion

9
8. Bibliography

11
1. Introduction

With our exploration and research of the Mac OS X operating system, we have increased our knowledge of operating systems, in particular with Mac OS X, and provide the reader with the same information. Although not an exhaustive list, we have covered a variety of topics including processor modes, privileged instructions, process states, memory management, and an overview of the system. When finished with this paper, the reader should feel more acquainted with Mac OS X, and what it has to offer as an operating system both as a user and a developer.
2. Overview

2.1 A Brief History of OS X

Steve Jobs’, the current CEO of Apple, was terminated from Apple on May 31, 1985. Jobs’, along with five other Apple employees, began working on the idea of creating the perfect research computer for Universities and research labs. Although Apple was interested in Jobs’ plans, they were outraged by the five employees’ actions and subsequently sued Jobs. The startup became know as NeXT Computer, Inc and on October 12, 1988 they released the first NeXT Computer (running NEXTSTEP 0.8), although the mature release took another year. NEXTSTEP was based on Mach 2.5 and 4.3BSD, and had an advanced GUI system based on Postscript using Objective-C as its native programming language, and included the NeXT Interface Builder. (Singh)
NEXTSTEP 2.0 release supported CD-ROMS, color monitors, NFS, on-the-fly spelling and various other features. The last version, NEXTSTEP 3.3, was released in February, 1995; however the year before NeXT and Sun had jointly released specifications for OpenStep. OpenStep was an open platform comprised of several APIs and frameworks that allowed anyone to create their own implementation. OpenStep, the successor to the NEXTSTEP operating system, only released three versions. It was so popular that SunOS, HP-UX, and even Windows NT had implementations at some point, and the GNUstep Project (http://www.gnustep.org/) still exists. By 1996, despite the fact that OpenStep ran on many architectures (by means of fat binaries), NeXT was more concerned with development tools for the Web. (Singh)
Meanwhile, Apple wanted to compete with Microsoft and actually beat Windows 95 to the market. They failed and suffered a setback with Pink OS, a joint project between IBM and Apple, which was discontinued in 1995. Apple also worked on an advanced operating system called Copland in which they shipped “pieces of Copland technology.” This, along with Pink OS, did not work in Apple’s favor.
Apple was now in desperate need of an operating system and showed interest in BeOS but nothing ever materialized in negotiations. Apple then considered Windows NT, Solaris, and even Pink OS. However, around this time, Steve Jobs contacted Apple and suggested OPENSTEP as a possible operating system which had proven itself in the market. Jobs pitched NeXT technology to Apple, asserting that OPENSTEP was many years ahead of its time. Apple agreed and acquired NeXT in February, 1997, for $427 million.
Apple named its upcoming NeXT-based system Rhapsody, and had two developer releases in September, 1997, and May, 1998. In September of 1997 Jobs became the interim CEO of Apple, and the following year, in Apple’s strategy announcement, Mac OS X was first mentioned. Jobs said OS X would be available the fall of 1999 and reassured many that backward compatibility would be present in the new system. On March of 1999 Mac OS X Server 1.0 and a preview of the desktop version was released. The table below shows other major releases:
	Mac OS version
	Date

	Mac OS X beta
	September 13, 2000

	10.0 named “Cheetah
	March 24, 2001

	10.1 named “Puma”
	September 29, 2001

	10.2 named “Jaguar”
	August 13, 2002

	10.3 named “Panther”
	October 24, 2003

2.2 Mac OS X Environment
The Mac OS X operating system depends on some proprietary hardware which forces a user to purchase Apple hardware. From the Apple website, the requirements for Mac OS X are:

· PowerPC G3, G4, or G5 processor

· Built-in FireWire

· At least 256MB of physical RAM

· A built-in display or a display connected to an Apple-supplied video card supported by your computer

· At least 3.0 GB of available space on your hard drive; 4GB of disk space if you install XCode 2 developer tools

· DVD drive for installation (get CD media for $9.95)
However, Apple “announced plans to deliver models of its Macintosh® computers using Intel® microprocessors.” (Apple Computer, 2005d) Current reports suggest this will not be available till June 2006.
2.3 State-of-the-Art Advancement

Apple, from its first Mac OS, has concentrated on providing the simplest and most reliable system for its users. From the beginning, Mac OS has set the standard against which modern user interfaces are now modeled, and they continue to raise that standard. (Vega, 2000) Mac OS allowed for users to visually perform all the same tasks as in Microsoft’s DOS or AT&T's UNIX and, consequently, made the system more accessible to the lay user. Integration with the underlying hardware has allowed the Macintosh platform to extend the experience beyond the software and into the actual management of the machine, with plug-and-play device support and "out of the box" support for many devices. (Vega, 2000)

“In an effort to create a best-of-both-breeds operating system which directly leverages the advances and experience, Mac OS X has Apple’s user experience arena and the well-established power of BSD.” (Vega, 2000) Mac OS X’s advancement is best summarized on their own website when describe in what OS X has to offer: “fine-grained multithreading, Mach 3.0 microkernel, FreeBSD services, tight hardware integration and SMP-safe drivers, as well as zero configuration networking.” (Apple Computer, 2005e) Also, Mac OS X’s “kernel features improved SMP scalability and 64-bit virtual memory, while standards-based access control lists take UNIX permissions to the next level.” (Apple Computer, 2005e) It is clear that Apple’s attempt at using the best parts of different systems has worked to its benefit. If they continue on this path, Apple may be defining what state-of-the-art is if they already do not.
2.4 Success of Mac OS X

As a company, there is no doubt concerning the success of Apple. This is not necessarily due to their operating system but from the company as a whole (and the popularity of iPods). Recently, it was reported that unit sales of Macintosh systems increased by 1.2 million in comparison with 2004 sales. Also, desktop demand was stimulated due to the new iMac G5 and the introduction of the Mac mini in January 2005. Net sales and unit sales of desktop products increased 45 percent and 55 percent, respectively, during 2005. (Mac News Network, 2005)
Apple’s technical success is evident by the aforementioned history and the following information provided in this paper. Although this paper covers only Mac OS X, Apple has been technically successful in terms of engineering. Their products are aesthetically pleasing, user friendly and comparatively small. All of these points, along with current trends and its future with Intel, may lead one to conclude that Apple will continue to succeed both commercially and technically in the future.
2.5 The Good and the Bad

Below, a few good and bad qualities will be discussed; however, it should be noted that many of the qualities discussed concern the higher level of OS X. Most of bad qualities of the system concern the usability or interface rather than the lower level of the system. We attribute this to OS X’s stability and soundness at the lower level. Nevertheless, in general, Mac OS X is a great system, but there is always room for improvement.

Some qualities that can be pointed out as good include speed, Exposé and File Vault. OS X has improved in speed tremendously in comparison to pre-OS X systems due to some optimization of the systems code. Exposé is a program included in OS X which acts as a desktop or window manager. For example, with the press of the F9 key, Exposé will immediately scale, tile, and arrange all of the windows so the user can view all of the windows open. (Apple Computer, 2005f) Another nice feature, called File Vault, included in OS X, allows the user to encrypt and decrypt any data on the fly using AES-128 bit encryption.

The bad of OS X mainly concerns some user-interface problems. For instance, OS X has some information density problems. The dialogs are much larger than they need to be which hinders other windows. A good amount of space will be wasted by some windows when it’s not necessary. (Tognazzini, 2004) Another problem concerns Apple’s applications which use a proprietary system of organizing data. This disallows the user the option to export his or her data from the application which deter many from using the applications.

3. Processor Overview
3.1 Processor Modes

Mac OS X has two processor modes much like most operating systems. They are aptly named User mode and Supervisor mode (also known as Kernel mode to some). Strangely, the Virtual Memory Manager (also known as VM) determines whether the OS enters user mode. When VM is disabled, all code in Mac OS is executed in supervisor mode. When VM is enabled, the majority of code is run in user mode. The reason for this is to prevent double page faults on the stack.

The processor has two stack pointers. One is used in user-mode and is called the User Stack Pointer. The other is used in supervisor mode and is called the Interrupt Stack Pointer. The processor will run in user mode until it takes an exception at which point it switches to supervisor mode to handle the exception.

3.2 Privileged Instructions

Because the processor is most often executing code in user mode, certain privileged instructions are not allowed to be executed. This is quite rare in the new Mac OS X, but if it happens, it usually happens to code executed by applications released prior to the latest release of Mac OS X. To handle this, a privilege violation exception is caused and then trapped by VM. VM then emulates the privileged instruction in software. (Apple Computer, 1998c)
3.3 Uniprocessor and Multiprocessor

Mac OS X is capable of running both uniprocessor and multiprocessor environments. In the multiprocessor environment it uses symmetric multiprocessing. The most common use for this is so that the tasks and interrupts can be handled simultaneously whereas in a uniprocessor system, the interrupts are handled in between two task instructions. (Apple Computer, 1999)

[image: image1.png]Uniprocessor system

Multiprocessor system

Tosklevel Intarupt Tasiclovel Intanupt
divercode bandir code rver coda handler cod
nsinuction 1 nsirucion |
nstnition 2 Instructon2
Interupt| intruction 1 nterupt|_instruction 1
instrucion . rsiructon | Instucton 2
instruciona Insructon 4 | Instuctona
nsiricion 3

Instuction &

(Apple Computer, 1999)
4. CPU Scheduling
The Mac OS X kernel is comprised of two parts. These two parts are based on Mach and BSD. Mach is responsible for handling memory management and process scheduling. “Mac OS processes and POSIX threads are implemented on top of Mach tasks and threads, respectively.” (Apple Computer, 2005a) In the Mac OS sense, tasks are simply a collection of system resources. A thread is a point of control flow that has access to all of the resources in its containing task. Essentially, a task does nothing itself. The thread or threads it contains are what actually execute instructions. In lieu of this, scheduling in Mac OS X is concerned with thread scheduling rather than process scheduling. (Apple Computer, 2005a)

Mac OS X uses preemptive priority based thread scheduling. It separates each thread into “priority bands” which each correspond to a range of priority numbers. The priority bands and numbers go as follows:

	Priority Band
	Priority Numbers

	Normal
	0-63

	System High Priority
	64-79

	Kernel Mode Only
	80-95

	Real-Time Threads
	96-127

(Apple Computer, 2005b) (Gerbarg, 2001)

Priority level 31 is the default priority level for a thread in Mac OS. The user is capable of altering the priority of a thread in multiple ways. The simplest of these ways is to use an API that is included with the OS named the “Mach Thread API.” Using this API, the user can write, build and run simple C code to change the priority of a thread.

5. Process States
As discussed in the previous section, processes do not actually execute any instructions themselves, but are merely collections of resources. Therefore, there are no actual process states, but instead, thread states. Each thread can be in one of three states, ready to execute, executing, or stopped. These three states can easily be compared to the terms we discussed in class. The “ready to execute” state is exactly the same as the “ready” state we discussed in class. When a new thread is created, it does not begin executing immediately, instead, it waits for the resources it needs to become available and begins executing when they do. This brings us to the “executing” state, which be compared to the “running” state that was discussed in class. In this state, the thread is doing exactly what its name implies, executing instructions. The only state that a thread in the “executing” state can transition to is “stopped”. This state can be compared to the “blocked” state that was discussed in class. When a thread is executing, a resource can become unavailable to that thread. The kernel then issues a stopping call to that thread, hence, the “stopped” state. The thread state can actually be altered much like the priority of the threads. In this case, it can be done with help from the Thread Manager API. As before, a simple C program allows the user to manipulate the state of any thread that is currently in the kernel. (Apple Computer, 2003)
6. Memory Management
6.1 Memory Model

When the Mac OS series was originally developed it used a system of memory management that had since become obsolete. Since at the time the Mac machine only had the ability to run one application at a time, only 128K of RAM, and no permanent secondary storage the designers developed a simple scheme to handle these constraints. Yet since that time the Mac machines has become more powerful, and in order to run the OS series had to develop more complex schemes to handle the increased resources. Eventually these schemes became less and less efficient, up to the point where, with the implementation of OS X, the schemes had been scrapped and a new modern Virtual Memory scheme has been instated. (Wikipedia, n.d.)

With Virtual Memory a system is free from the limitations of physical RAM. The Virtual Memory Manager allocates a logical (“virtual”) address space larger than the size of the RAM. This space is then divided into uniformed sized spaces called pages. Under the System 7-style Virtual Memory system, which is used by Mac OS X, each page is 4 kilobytes (Apple Computers, 1998a). Processes are then given their own spacious 32 or 64-bit virtual address space. As each process uses more and more of the address, the operating system gives more space to the address, allowing 32-bit process address spaces to grow up to four gigabytes and 64-bit process addresses to grow up to 18 exabytes (260 bytes) (Apple Computer, 2005).

In determining the range of addresses controlled by Virtual Memory, System 7-style Virtual Memory uses the logical memory map featured below. I/O, ROM and slot space are absent from the diagram as they vary from machine to machine.

[image: image2.emf]
The Virtual Memory controls two classes of address ranges, the primary address range and the range that results from the loading of the Code Fragment Manager.

The primary address range, which only has one instance, makes up the regular memory for Mac OS X. As seen above, the primary address range includes the memory above BufPtr, Process Manager heap (where application heaps are stored), and the System heap (reserved for the operating system) (Apple Computer, 1998b). As for the address range that is created when the Code Fragment Manager is loaded, this is referred to as file mapped address range and is swapped directly into a container’s data fork (Apple Computer, 1998a).

6.2 Virtual Memory Implementation

The System 7-style Virtual Memory has five important implementation aspects: prevention of fatal page faults, running old drivers, a synchronous small computer system interface (SCSI) manager, as well as an asynchronous SCSI manager, and an ATA manager. Each of these five play a vital role in implementing the Virtual Memory system. And each of these must be configured correctly for Mac OS X to run properly and efficiently (Apple Computer, 1998a).

The first key implementation difficulty in using the System 7-style Virtual Memory is the prevention of fatal page faults. System 7 goes about this prevention in two different approaches. First, it requires paging devices to refrain from causing page faults in the process of handling a read/write request. Second, the Virtual Memory stops code that may cause a page fault from executing with another page fault is currently being handled. Disabling this code, referred to as “user code”, is rather tricky on the Mac OS X because programmers and the application they develop have access to many interrupt level services. If one of these services was to be called during while a page fault is being handled and this causes a second page fault to generate then a double page fault occurs and the system crashes (Apple Computer, 1998a).

As for handling old drivers, System 7 is designed so that they are still compatible with the Virtual Memory without having the greater part of device driver writers to rewrite their drivers. This is done with a combination of two techniques. The first is that routines such as “_Read”, “_Write”, “_Status”, and “_Control” (all Device Manager routines) are patched to avoid parameter blocks handed off to the device drivers. Second, the entire system heap is held. Doing so prevents device drivers from causing a page fault while accessing their own code (Apple Computer, 1998a).

Still another problem is synchronizing the SCSI manager. If System 7 operated using the same algorithm as the original Mac OS the Virtual Memory Manager would need the SCSI bus to handle page faults. This left the Virtual Memory Manager vulnerable to fatal page faults if interrupted. The solution to this was simple; ensure the device managers did not cause a page fault-the same way they were for old drivers-and to disable user code while the SCSI bus is busy. This ensures interrupts do not cause a page fault.

With the introduction of the asynchronous SCSI manager (as a way to solve the original algorithm problem) came a new problem. With the current Virtual Memory Manager, user code quite commonly takes page faults while interrupts have been disabled. The asynchronous SCSI manager relies on these interrupts to complete asynchronous processes and operations. Unfortunately, there is no clean way to solve this problem. But a solution was found by patching “vSyncWait” to poll the SCSI hardware looking for interrupts.

Finally, when ATA hard disks were introduced to Mac OS computers, the problems faced by the SCSI software reappeared, only this time for the software controlling the ATA hard disks. Since the problems were similar it turned out the solutions were too. Because of that the ATA I/O systems utilize the same methods as the SCSI I/O systems. This allows the System 7 Virtual Memory to work complain free (Apple Computer, 1998a).

7. Conclusion
Apple has combined the necessary components and technologies needed to create a successful as well as efficient operating system. Many people would agree that Mac OS X is certainly one of the better widely-used operating systems available today. Critics and users alike praise its ease of use along with its many capabilities that other operating systems lack. Apple’s implementation of state-of-the-art technologies such as preemption and multiprocessing has made Mac OS one-of-a-kind. Mac OS has also become attractive to a broad spectrum of users. The easy-to-use graphical interface makes it attractive to average consumers while the UNIX shell that it is based on makes it very attractive to engineers and developers alike. As Apple continues to develop this operating system, they will continue to implement state-of-the-art technologies and eventually deliver a product that may dominate the market.
8. Bibliography

Apple Computer, Inc (1998a). “Technical Note TN1094: Virtual Memory Application Compatibility.” URL: http://developer.apple.com/technotes/tn/pdf/tn1094b.pdf
Apple Computer, Inc (1998b). “Technical Note TN1094: Virtual Memory Application Compatibility – Glossary.” URL: http://developer.apple.com/technotes/tn/pdf/tn1094gloss.pdf
Apple Computer, Inc (1998c). “How VM Works.” URL:

http://developer.apple.com/technotes/tn/pdf/tn1094b.pdf
Apple Computer, Inc (1999). “Symmetric Multiprocessing.” URL:

http://developer.apple.com/documentation/Hardware/DeviceManagers/pci_srvcs/pci_cards_drivers/PCI_BOOK.76.html
Apple Computer, Inc (2003). “Thread Manager Reference.” URL:

http://developer.apple.com/documentation/Carbon/Reference/Thread_Manager/Reference/reference.html
Apple Computer, Inc (2005a). “Tasks and Threads.” URL:

http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/Mach/chapter_6_section_3.html
Apple Computer, Inc (2005b). “Overview of Scheduling.” URL:

http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/scheduler/chapter_8_section_2.html
Apple Computer, Inc (2005c). “Memory Management in Mac OS X.” URL: http://developer.apple.com/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
Apple Computer, Inc (2005d). “Apple to Use Intel Microprocessors Beginning in 2006.”

URL: http://www.apple.com/pr/library/2005/jun/06intel.html
Apple Computer, Inc (2005e). “Based on UNIX.” URL:

http://www.apple.com/macosx/features/unix/
Apple Computer, Inc (2005f). “Exposé: Find the Window You Need.” URL:

http://www.apple.com/macosx/features/expose/
Gerbarg, Louis (2001). “Advance Synchronization in Mac OS X: Scheduling Bands.”

URL: http://www.usenix.org/publications/library/proceedings/bsdcon02/full_pape

rs/gerbarg/gerbarg_html/BSDCon.html

Mac News Network (2005). “Apple expenses, R&D climb in 2005.” URL:

http://www.macnn.com/articles/05/12/01/jobs.to.keynote.mwsf/
Tognazzini, Bruce (2004) “Panther: The Good, the Bad, and the Ugly.” URL:

http://www.asktog.com/columns/061PantherReview.html
Singh, Amit (2005). “A Brief History of Mac OS X.” URL:

http://www.kernelthread.com/mac/osx/history.html
Vega, Wilfredo (2000). “The Challenges of Integrating the Unix and Mac OS

Environments.” URL: http://www.wsanchez.net/papers/USENIX_2000/
Wikipedia (n.d.) “Mac OS memory management.” URL: http://www.answers.com/topic/mac-os-memory-management
PAGE
8

