	Your Name
	Title
	Page 2 of 14

The Mac OS X kernel – A Technical Overview
Michael C. Smith
CS 550 section 1

Fall 2005

8 December 2005
This work complies with the JMU Honor Code.

Table of Contents
2Table of Contents

3Introduction

31. Overview

52. Darwin and the XNU Kernel

62.1 Mach

72.1.1 Processor Modes

82.1.2 Memory Management

82.1.3 CPU Scheduling

92.1.4 Tasks and Threads

102.1.5 Ports and Port Rights

102.1.6 Inter-Process Communication

112.2 BSD

12Conclusions

13Bibliography

14Appendix A: Table of Acronyms

Introduction

Although it follows the nomenclature established for other Macintosh operating systems (e.g., Mac OS 8 and Mac OS 9), the Mac OS X architecture is not based on its predecessors. The underlying technology is a UNIX-like core operating system that is a hybrid kernel constructed from Carnegie Mellon University’s Mach kernel and parts of the FreeBSD kernel (a version of Berkley Software Distribution’s UNIX-like operating system). This open-source kernel, called the XNU (a recursive acronym for XNU is Not Unix) kernel, was released as part of Apple’s open-source Darwin operating system (Mac
). In addition to the XNU kernel, Mac OS X includes the I/O Kit, file systems, networking components, and a graphical user interface, or GUI (Kernel). While the other parts of Mac OS X are briefly described, the focus of this paper will be the structure and function of the XNU kernel.

1. Overview

The first releases of Mac OS X were designed to run on Macintosh computers with PowerPC G3, G4, and G5 processors (Table 1 on the next page provides a history of the Mac OS X versions). Later versions drop support for the older G3s but add support for computers with Intel x86 processors. In fact, Apple’s Steve Jobs announced in June, 2005 that Apple plans to completely transition to Intel processors by the end of 2007. All versions released so far continue to support applications written for Mac OS 9 by providing the “Classic” runtime environment. Apple has stated that versions designed for the x86 platforms will not offer support for Classic (Mac).

One way to look at Mac OS X is as a series of layers which each build upon the features of the previous layer. Figure 1 depicts this abstraction.
Figure 1: Layers of Mac OS X
[image: image1.png]
The Core OS (the XNU kernel) is composed of the Mach kernel, device drivers, and low-level BSD commands. Low-level features utilized by most types of software are implemented in the
Table 1: History of Mac OS X releases (Mac)

	Mac OS X version
	Release date
	New features / changes

	10.0 “Cheetah”
	March 24, 2001
	- first complete overhaul of Mac OS since 1996

- far fewer “kernel panics” than in the Beta release of September, 2000

	10.1 “Puma”
	September 25, 2001
	- minor system performance upgrades

- some missing features added (e.g., DVD playback)

	10.2 “Jaguar”
	August 24, 2002
	150 enhancements (according to Apple)

- more support for Windows-based networks

- upgraded graphics and networking software

- improved file manager (Finder)

	10.3 “Panther”
	October 24, 2003
	- discontinued support for G3 computers

- further upgrades to Finder

- new window management system (Exposé)

- improved PDF rendering for faster viewing

	10.4 “Tiger”
	April 29, 2005
	200 new features (according to Apple), but support for older machines dropped

- metadata-based file search tool (Spotlight)

- new versions of iChat, QuickTime, and Safari

- Automator (automates repetitive tasks)

- screen reader for users with vision disabilities (VoiceOver)

- 64-bit memory support for G5 computers

- updated UNIX utilities

	10.4.1 – 10.4.3

Intel x86 versions
	June – November 2005
	- run on computers with Intel x86 processors

- feature parity with the PowerPC versions

	10.5 “Leopard”
	late 2006 / early 2007, anticipated
	- support for both PowerPC- and Intel x86-based Macintosh computers

Core Services layer. Such features include collection management, data formatting, low-level network communication, memory management, process management, stream-based I/O, string utilities, and XML parsing. The Application Services layer contains the implementation of such features as disc recording, font management, HTML rendering, and speech synthesis and recognition. Services for rendering 2D and 3D graphics, audio, and video are provided by the Graphics and Multimedia layer. Apple technologies in this layer include Quartz, which handles window management and 2D graphics rendering, QuickTime, which displays multimedia-related information (audio, video, and virtual reality), and Core Audio, which manages high-quality audio software and hardware (Technology, Mac).

The Application Environments layer consists of the Classic runtime environment and a variety of application programming interfaces, or APIs. Classic, or more fully the Classic Compatibility Environment, is a hardware and software abstraction layer that provides the capability for Mac OS 9 applications to run unmodified on Mac OS X. This environment is part of Apple’s plan to phase out the older, obsolete OS versions. The Carbon API provides backward compatibility for applications written to run on Mac OS 9. It contains as set of C APIs that provide support for the Aqua user interface elements and other utilities unique to Mac OS X. If an application conforms to the Carbon APIs, it can run on both OS 9 and OS X without changes. If it does not, it can only be run on Mac OS X using the Classic Environment. Cocoa and Java are both object-oriented APIs. The X Window System, also called X11, is a windowing system for bitmap displays. This can be used to build GUIs (Technology, Mac).

Finally, the User Experience layer consists of the system components that the Macintosh user sees and utilizes. Examples include the Aqua user interface, Accessibility utilities, AppleScript (a scripting language), software configuration utilities, and the Finder file management system (Mac).
2. Darwin and the XNU Kernel

The first version of the Darwin operating system, version 0.1, was released in March, 1999. This open-source, stand-alone operating system is composed of the XNU kernel and a collection of drivers. It does not include the Apple-engineered application environments or the proprietary system elements such as Finder and Aqua. As Apple completes enhancements to this core operating system and releases new versions of Mac OS X, it also releases the kernel upgrades to Darwin as open source. The current version of Darwin, 8.3, consists of over 250 packages (the XNU kernel along with various drivers) and corresponds to the core of Mac OS X 10.4.3 (Singh).

The XNU kernel is composed of a form of CMU’s Mach and the BSD kernel. In order to support the specific performance goals and desired functionality of Mac OS X, Apple engineers modified and extended the Mach 3.0 microkernel. The Mach portion of XNU handles memory management, memory protection, advanced virtual memory, pre-emptive multitasking, inter-process communication, and the I/O system. The BSD part of XNU is derived from FreeBSD, a version of 4.4 BSD with enhancements in the areas of compatibility, networking, performance, and security. In Mac OS X, it is responsible for managing users and permissions, maintaining the network stack, and providing a virtual file system.

2.1 Mach

Mach is an operating system kernel that was developed at Carnegie Mellon University. The project began in 1985 and continued until 1994, culminating with the release of Mach 3.0. Those responsible for this project relied on several key concepts that arose out of the UNIX operating system:
· The operating system is split into two main parts:

1. the utility programs that control most operations

2. the kernel that directs these programs.
· The kernel is responsible for loading and supervising the utility programs as well as providing locking and I/O services for them.

· The rest of the system runs outside of the kernel.

· Processes communicate with one another through pipelines (or pipes). A pipe is unidirectional; the output of one process supplies the input of another process.
Two major problems with UNIX provided the impetus for Mach:

· UNIX (as well as UNIX-based operating systems) is implemented as a monolithic kernel (monokernel). By the inception of the Mach project, UNIX, which had started out at around 100,000 lines of code, had grown to several million lines of code. The memory footprint (how much memory is used by a program) of a large OS kernel was considered a major problem.
· The UNIX concept of modeling every high-level device as a file does not work well for moderns services such as GUIs and networking. (Mach)

In order to attack the large memory footprint, the developers of Mach moved even more code outside of the kernel into user space. This operating system is constructed such that the kernel is responsible not for actually executing privileged instructions, but for calling the appropriate system utilities (small programs called “servers” that run like other user-space programs) and granting access rights so that the calling process can directly perform functions that had previously been part of the kernel. What was left became known as a microkernel, a small OS that manages the servers and schedules their access to the CPU and other hardware, and Mach was the first operating system constructed as a microkernel (Singh).

Coming up with an abstraction that improved upon the everything-is-a-file concept was a challenge. The Mach developers modified the concept of a unidirectional pipe so that any kind of information (not just file-like information) could be transferred between two processes. The transfer of information between processes, called inter-process communication, or IPC, is accomplished through ports (the Mach abstraction similar to pipes), which are secure channels for IPC. As a protection against program crashes, the kernel is responsible for verifying the validity of the IPC messages (Mach).

The Mach kernel manages OS services through several abstractions (which are defined here and elaborated in subsequent sections). A task (similar to a “process” in other operating systems) is a framework in which threads run. A task, which does not itself perform any computation, consists of one or more threads (which execute within the CPU), a virtual address space, and a port right namespace. Virtual memory allows a task both to share physical memory with other tasks and to hold memory resources significantly larger than those limited by the available physical memory. The Mach virtual memory manager causes the CPU hardware to map the virtual addresses onto physical memory when they are called for. A port is a secure unidirectional channel that supports communication between tasks running on a single system. Port rights, or port access rights, refer to a task’s authorization to send to or receive from a port. A namespace is simply a context in which task identifiers are defined. Inter-process communication, accomplished via ports, involves lock sets, message queues, notifications, RPCs, and semaphores (Kernel).

Mach is responsible for the following aspects of the Mac OS operating system:
· console I/O

· CPU usage and scheduling

· inter-process communication (IPC)

· interrupt management

· memory protection

· pager support

· preemptive multitasking, including kernel threads

· remote procedure calls (RPC)

· support for soft real-time services
· virtual memory management (Singh, Kernel, Technology)
2.1.1 Processor Modes

All applications and many operating system processes make use of the CPU in user mode. In UNIX (or a UNIX-like system), when a process needs the operating system to perform a function in supervisor (or kernel) mode, it calls the kernel through a trap (or syscall). The kernel, using a trap table to determine the appropriate entry point in memory, executes the instruction and then returns control to the calling process (Mach).

Although syscalls are also utilized in Mach, the kernel manages port rights (described in detail in Section 2.1.5) in order to grant privileges to any program that would normally be reserved for the kernel only, thus allowing user-space programs to interact directly with the hardware. Mach accomplishes this through the inter-process communication (IPC) system (described in Section 2.1.6). When a process issues a syscall to the kernel, the kernel calls a utility program to handle the request and grants access between the utility program and the calling process via ports. These two processes use the IPC system to send instruction messages (Mach).

The primary benefits of using IPC for message passing include efficient management of multiple threads and support for symmetric multi-processing (SMP). In SMP, the same kernel manages two or more processors that share the same memory and have the same type of access to I/O devices. In this architecture, any task (even a kernel task) can run on any processor. SMP works by directly utilizing shared memory via IPC message passing (Mach, Kernel).
2.1.2 Memory Management

The Mach virtual memory (VM) manager allocates up to 4 GB of virtual memory (for 32-bit applications – up to 18 exabytes [18 billion billion] for 64-bit applications) to each process. Mach employs a demand paging strategy to decide when to bring pages of virtual memory from storage into RAM. In order to manage the conversion of a task’s virtual addresses into physical memory, Mach maintains address maps for each task (Technology).

In Mac OS X, all kernel-level tasks run in the kernel’s own address space (kernel space). All applications are executed in user space; however, these applications do not actually share the same memory. Each task is allocated its own address space. In a shared-memory system, the stability of the operating system can be threatened by a poorly-behaved process. If a process should intentionally (or accidentally) write data into the address space of the operating system or another process, data could be lost or corrupted, and this condition could even lead to a system crash. Mach provides a barrier around each application and system task, ensuring that an application cannot access or modify the memory allocated to another application or the operating system. Because of this memory protection, if an application’s misbehavior causes it to crash, other applications and the operating system are not affected (Technology).

Of course, it is sometimes necessary for processes to access each other’s memory. In order to do this safely, Mach provides primitives including shared libraries, frameworks, POSIX shared memory, and Mach messaging (which is able to transfer memory from one process to another). A named memory object gives one task the capability of mapping a range of memory, unmapping it, and sending it to another task (Kernel).

A memory object called a pager is owned by a task and is responsible for providing the contents of a page when the page is called into physical memory. The pager also writes modified data to storage when a page is transferred out of physical memory. Mac OS X has two integral pagers: the default pager and the vnode pager. The default pager is responsible for managing anonymous memory – nonpersistent memory that is zero-initialized and exists only throughout a task’s lifetime. The vnode pager, on the other hand, is used to map files into memory objects. An interface called the External Memory Management Interface (EMMI) allows user-mode tasks to alter the contents of memory objects. Through the EMMI, Mach creates two ports for each memory region and two for each cached vnode. This provides the foundation for memory sharing between tasks (Kernel).
2.1.3 CPU Scheduling

In addition to memory protection (a feature lacking in previous versions of Mac OS), Mac OS X provides a more robust environment than its predecessor through preemptive multitasking. The stability of OS 9 depends on cooperative multitasking (applications cooperate to share the time-multiplexed processor). If one or more applications do not “cooperate,” all processes may become less responsive as they do not receive their fair share of the processor. The Mach kernel of OS X manages a preemptive multitasking environment, scheduling processes preemptively via prioritization of tasks. This allows OS X to provide real-time support for applications that require soft real-time behavior (Kernel). Preemptive multitasking also allows Mach to ensure that the processor is used most efficiently (Technology).
2.1.4 Tasks and Threads

Mach tasks are the foundation for Mac OS X processes. A task is basically a collection of system resources which are referenced by ports and may be shared with other tasks through the distribution of port rights. Each task contains a large virtual address space which may be shared with other tasks through external memory management. Each task must contain at least one thread (as instructions are only executed by threads, not tasks), and all the threads within a task share all of its resources (Kernel).

Since the owning task is responsible for resource management, a thread is a lightweight entity, having low overhead because it maintains minimal state information (primarily its register state). It can execute concurrently with other threads (even those belonging to the same task). By employing synchronization techniques, multiple threads can accomplish work more efficiently than a single thread. Mach threads make use of resources allocated to their owning task by executing trap instructions that cause the kernel to send a message to some other thread/task or perform an operation on behalf of the thread (Kernel).

Mac OS X employs both time-sharing and fixed-priority policies for scheduling threads. Mach’s thread scheduler adjusts a time-sharing thread’s priority in order to maintain a balance of system resource consumption among all time-sharing threads. High priority threads, such as real-time threads, are typically assigned a fixed priority. After executing for a fixed time quantum, these threads go to the end of the queue of threads having the same priority. It is possible to allow a fixed priority thread to run until it blocks or is preempted by a higher-priority thread by assigning it a time quantum of infinity. Table 2 illustrates the thread prioritization scheme (Technology, Kernel).
Table 2: Thread priority bands (Kernel)
	Priority Band
	Characteristics

	Normal
	normal application thread priorities

	System high priority
	threads whose priority has been raised above normal threads

	Kernel mode only
	reserved for threads created inside the kernel that need to run at a higher priority than all user space threads (I/O Kit workloops, for example)

	Real-time threads
	threads whose priority is based on getting a well-defined fraction of total clock cycles, regardless of other activity (in an audio player application, for example).

2.1.5 Ports and Port Rights

A Mach port is comparable to a unidirectional UNIX pipe. It is used for secure communication between a client requesting a service and the server which provides it. As this channel is unidirectional, a second port is utilized if the server must reply to the client.

An object, such as a message queue, is a resource that has been named (i.e., accessed) by a port. Objects may have only one receiver (one receive port) but may potentially have multiple senders (sending ports). The manager that receives a service request determines the service that is to be provided by an object. If an object is provided by the kernel, the kernel becomes the receiver for its ports. Otherwise, the task providing the object is the receiver of the ports. If a port names a task-provided object, the receiver of requests for that port may be changed to a different task by using a message to pass the port to that task (Kernel).

An object may have a name port, which allows other tasks to obtain information about the object or perform only non-privileged operations on it, and a control port, or privileged port, through which the object may be manipulated by other tasks. Tasks are assigned port rights, or permissions to access ports in certain ways (e.g., send or receive). Tasks may only access a port by possessing rights to the port; without owning rights, a task is not able to access or manipulate another object. This forms the primary security mechanism within Mach. Using IPC, Mach can copy and move port rights between tasks, thus passing capabilities to an object or server (Kernel).
2.1.6 Inter-Process Communication

Mach uses several forms of IPC, including message queues, semaphores, notifications, and lock sets. The kernel defines the operations that are permissible for each type of IPC object denoted by a port. The type of IPC object also determines how and whether data transfer occurs (Kernel).

A message queue may contain such information as pure data, copies of memory ranges, or port rights. Multiple tasks may not hold the receive right for a port representing a message queue; only one task may read messages from the port queue. However, multiple tasks can obtain sending rights to the port, giving them the capability of writing messages into the queue. One task can communicate with another task by writing messages into a port queue for which it holds send rights. The task holding receive rights to that port may then read the message queue at a later time. Thus the transfer of messages is an asynchronous operation.

Mach IPC includes the use of counting semaphores. The operations supported are wait, post, and post all. The wait operation places a thread in a semaphore’s wait queue. The post operation wakes up the thread at the head of the wait queue, while the post all procedure wakes up all threads currently in the wait queue. Notifications are similar to semaphores, but they also contain a state field. Each time a notification object is posted, the state field is updated. Locks provide mutual exclusion regarding access to a critical section. A thread holds a lock during a transaction in a critical section. When it completes the transaction, it releases the lock.

2.2 BSD

In addition to the Mach kernel, Mac OS X relies on a modified version of FreeBSD for a some of its functionality, primarily in the areas of networking and security, memory, and additional kernel facilities.

Many users can simultaneously use a Mac OS X system for a variety of tasks. BSD manages system peripherals (such as disk drives and printers) so that they may be shared by all users on the system or network. It has the ability to protect critical system resources from overuse by placing resource limits on users or groups of users at times of high demand. BSD provides a UNIX-like security model, implementing user and group identifications so that unauthorized users and groups may not access applications or files for which they do not have permission. This part of the OS also provides the capability for TCP/IP networking and support for standards such as SLIP, PPP, and NFS. Mac OS X, acting as an enterprise server, can provide services such as email, remote file access, internet services via HTTP or FTP, and firewall services (Kernel).

BSD also works along with Mach to manage several kernel functions. It supports preemptive multitasking via dynamic adjustment of thread priorities. This promotes fair sharing of the CPU between processes or users. BSD also supports SMP in computers having multiple CPUs (Kernel).

A user process makes use of two kinds of services: kernel facilities and system facilities that work in cooperation with or are executed by a server process. The kernel facilities available to a process include direct memory management, interrupts, timers, and access to files. Mac OS X’s BSD component provides kernel facilities such as process identifiers, process creation and termination, page mapping, page protection control, POSIX synchronization primitives, POSIX shared memory, real time and interval timing, file descriptors, pipes, sockets, process priorities, resource utilization and limits, bootstrap operations, and shut-down operations. BSD system facilities include generic input/output operations (e.g., read and write), file-system operations, IPC, device handling, process control, and network operations (Kernel).

The Mac OS X implementation of FreeBSD includes some features that were not originally part of FreeBSD. Apple developers added enhancements to the file-system buffer cache and file I/O clustering, including adaptive and speculative read ahead, user-process controlled read ahead, and time aging of the file-system buffer cache. Additional enhancements to file-system support include multithreaded asynchronous I/O for Network File Systems (NFS), implementation of Apple extensions for ISO-9660 file systems, addition of support for Mac OS Extended file systems, and support for accessing multiple forks in Mac OS Extended file systems (Kernel).

A user of Mac OS X, unlike an application developer, might never be aware of the services provided by the BSD kernel. However, the BSD command line environment is included in Mac OS X. Most Mac users choose to interact with the system through the GUI environment, but the BSD command line interpreter can be invoked at any time. This behaves like any other UNIX-like command line environment.
Conclusions

Mac OS X relies heavily on the open-source UNIX-based foundation of the XNU Kernel. The underlying technologies of this operating system are adapted and extended versions of the Mach 3.0 microkernel and the FreeBSD kernel. Augmented by proprietary Apple technologies such as the Finder file management system and Aqua GUI, Mac OS X is a stable and user-friendly operating system that has achieved both popularity and commercial success. To date, it is the best-selling UNIX-like environment by number of systems shipped.
Bibliography
No author specified (2005). “Kernel Programming Guide.” (cited in text as “Kernel”) URL: http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/index.html
No author specified (2005). “Mach kernel.” (cited in text as “Mach”) URL: http://en.wikipedia.org/wiki/Mach kernel
No author specified (2005). “Mac OS X.” (cited in text as “Mac”) URL: http://en.wikipedia.ort/wiki/Mac OS X

No author specified (2005). “Mac OS X Technology Overview.” (cited in text as “Technology”) URL: http://developer.apple.com/documentation/MacOSX/Conceptual/OSX_Technology_Overview/index.html#//apple_ref/doc/uid/TP40001067
No author specified (2005). “XNU.” (cited in text as “XNU”) URL: http://en.wikipedia.org/wiki/XNU
Singh, Amit (2005). “What is Mac OS X?” URL: http://www.kernelthread.com/mac/osx

Appendix A: Table of Acronyms
	Acronym
	Expansion

	API
	Application Programming Interface

	BSD
	Berkley Software Distribution

	CPU
	Central Processing Unit

	EMMI
	External Memory Management Interface

	GUI
	Graphical User Interface

	IPC
	Inter-Process Communication

	NFS
	Network File System

	OS
	Operating System

	SMP
	Symmetric Multiprocessing

	VM
	Virtual Memory

� As no individuals or groups of authors were identified for most of my sources, I have chosen a word from the article title to reference each of these works. Please refer to the � HYPERLINK \l "bibliography" ��bibliography� for details.

