MS-DOS/ PC-DOS

CS-450-2: Operating Systems

Fall 2005

Group Members:

Lindsey Buranych

Alan Crouch

Matthew Letnaunchyn

Sandra Saab

Carl Shapiro

Table of Contents

I. A Brief History

II. Operating System Environment

III. Economic and Commercial Success

IV. Technical Success

V. Did this Operating System Advance the state-of-the-art?

VI. What was done right? What was done wrong?

VII. Allowable Process States

i. Running State

ii. Ready State

iii. Blocked State

iv. Other States

VIII. File Management

i. Boot Sector

ii. FAT Region

iii. Root Directory Region and Data Region

IX. Process Data Structures

i. The COM and EXE Programs

ii. The Program Segment Prefix (PSP)

iii. The COM Program

iv. The EXE Program

X. Works Cited

A BRIEF HISTORY

MS-DOS is a text-based desktop operating system created by the computer manufacturer, Seattle Computer Products (SCP) in 1980 as QDOS (for Quick and Dirty Operating System). Later it was renamed 86-DOS because it was designed to run on the Intel 8086 processor (Wikipedia).

OPERATING SYSTEM ENVIRONMENT

MS-DOS was originally released in 1981 and had eight major versions. The development of MS-DOS was halted by Microsoft in the year 2000 with version 6.22, and sales were discontinued on November 31, 2001 (OS Files).

The following are the environment requirements for running MS-DOS 6.22:

Processor: 8086, 80386 or better for advanced memory management

RAM: 512 KB

Drive Space: 5 MB

Drives: Run from hard disk or diskette

Video: Monochrome, CGA, EGA, VGA or better

File Systems: FAT

Economic and Commercial Success

IBM and Microsoft both released versions of DOS. The IBM version was supplied along with the IBM PC, leading to the name PC-DOS. Microsoft released its versions under the name "MS-DOS" “IBM PC-DOS was one of the three major operating systems that dominated the personal computer market from about 1985 to 1995.” (Wikipedia) Microsoft and IBM developed an arrangement in which both firms would develop separate parts of the operating system resulting in a powerful overall product by sharing their product code. Microsoft and IBM conducted separate marketing strategies for MS-DOS and PC-DOS. Microsoft marketed their product to all of the consumers with compatible hardware while IBM’s software was for use on their own IBM PC. (Wikipedia)

Technical Success

“MS-DOS grew in spurts, with many significant features being taken from other products and operating systems, such as Microsoft's own Xenix - a variant on Unix - and Digital Research's DR-DOS, as well as tools and utilities including Norton Utilities, PC Tools (Microsoft Anti-Virus), QEMM expanded memory manager, and Stacker disk compression” (Wikipedia).

MS-DOS’s role as a desktop computer operating system today is greatly diminished. However, its simplistic architecture, minimal memory and processor requirements allow it to still be used in various embedded x86 systems. (Wikipedia)

Did this Operating System advance the state-of-the-art?

Microsoft functioned mainly as a vendor of computer programming languages until its acquisition of QDOS. Bill Gates and co-founder Paul Allen had written Microsoft BASIC and were selling it on disks and tape mostly to PC hobbyists. MS-DOS soared in popularity with the surge in the PC market. Revenue from its sales fueled Microsoft's phenomenal growth, and MS-DOS was the key to the company's rapid emergence as the dominant firm in the software industry. “This product continued to be the largest single contributor to Microsoft's income well after it had become more famous for Windows” (Linux Information Project).

What was done right? what was done wrong?

One of the greatest limitations in MS-DOS can be attributed to the design of the operating system. MS-DOS was not designed to be a multi-user or multitasking operating system. Add-on environments, specifically Top View and DESQview attempted to provide multitasking and achieved some success when combined with the virtual 8086 mode and virtual memory features of the Intel 80386 and later processors (Wikipedia).

Another limitation of DOS was the lack of a graphical user interface. The desire for an interactive, graphical interface was influenced by the release of the Apple Macintosh in 1984. Several programs running under MS-DOS introduced their own graphical interfaces, such as Microsoft Word for DOS, XTree, and the Norton Shell. “However, this required duplication of effort and did not provide much consistency in interface design (even between product lines). Non-Microsoft efforts to provide a consistent interface, for example Digital Research’s GEM, also failed” (Wikipedia).

ALLOWABLE PROCESS STATES
“A process, and its modern extension, the thread, are the active computational elements in a modern computer system” (Nutt, 197).

There are three basic states that a process may be in: running, ready, and blocked. Processes can exist in other states than the three aforementioned ones, but that depends on the specific operating system being used.

Running State

In the running state, the process is using the CPU at a certain time. Normally in a running state, there is only one running process at a time.

Ready State

In the ready state, the process is temporarily stopped by the operating system allowing another process to run (Dagunduro). In other words, a ready process is waiting for its turn on the processor (Coulson).

Blocked State

In the blocked state, a process cannot run until an external event occurs (Dagunduro). When a blocked process is running, but then requests a resource that is not available at the moment, it will remain blocked until the resource it needs becomes free (Nutt, 220). For example, if a process is waiting for another process to enter input or print output, then the running process will be blocked until the requested operation happens.

Other States

As mentioned above, there may be more then the three basic states. Some of the other states that a process may be in are suspended, delayed, and timed. A process that is suspended cannot run because it has been stopped by a kernel for some reason. A process that is delayed has suspended itself for a certain time period. A process that is timed is waiting for the occurrence of an event with a time-out (On Time, 2005).

In a single user system like MS-DOS, the computer is I/O blocked during each disk input, no matter if the input is by polled I/O or interrupts (Jc, 2000).

FILE MANAGEMENT
MS-DOS uses the File Allocation Table (FAT) file system to manage files. The FAT file system is comprised of four different sections including the Boot Sector, the FAT Region, the Root Directory Region, and the Data Region.

Boot Sector

The Boot Sector (see table A) is always the first sector of a partition and includes some basic file system information, pointers to the locations of the other sections and the operating system’s boot loader code. The FAT Region contains two copies of the File Allocation Table for the sake of redundancy. These are used as a map of the partition to indicate how the clusters are allocated. The Root Directory Region is a table that stores information about the files and directories in the root directory. This region is always located immediately after the FAT Region. The Data Region is where the actual file and directory data is stored and occupies most of the partition. The size of files and subdirectories can be increased arbitrarily (as long as there are free clusters) by simply adding more links to the file's chain in the FAT. It is important to note that each cluster can be used only by one file and consequently if a 1KB file resides in a 32KB cluster then 31KB is left unused.

	Byte Offset
	Length
	Description

	0 (0x00)
	3
	Jump instruction (to skip over header on boot)

	3 (0x03)
	8
	OEM Name (padded with spaces)

	11 (0x0b)
	2
	Bytes per sector

	13 (0x0d)
	1
	Sectors per cluster

	14 (0x0e)
	2
	Reserved sector count (including boot sector)

	16 (0x10)
	1
	Number of file allocation tables

	17 (0x11)
	2
	Number of root directory entries

	19 (0x13)
	2
	Total sectors (0 if greater than 65535. See Offset 32)

	21 (0x15)
	1
	Media descriptor

0xF8

Single sided, 80 tracks per side, 9 sectors per track

0xF9

Double sided, 80 tracks per side, 9 sectors per track

0xFA

Single sided, 80 tracks per side, 8 sectors per track

0xFB

Double sided, 80 tracks per side, 8 sectors per track

0xFC

Single sided, 40 tracks per side, 9 sectors per track

0xFD

Double sided, 40 tracks per side, 9 sectors per track

0xFE

Single sided, 40 tracks per side, 8 sectors per track

0xFF

Double sided, 40 tracks per side, 8 sectors per track

Same value of media descriptor should be repeated as first byte of each copy of FAT. Certain operating systems (MSX-DOS) ignore boot sector parameters altogether and use media descriptor value from the first byte of FAT to determine filesystem parameters.

	22 (0x16)
	2
	Sectors per file allocation table (FAT16)

	24 (0x18)
	2
	Sectors per track

	26 (0x1a)
	2
	Number of heads

	28 (0x1c)
	4
	Hidden sectors

	32 (0x20)
	4
	Total sectors (if greater than 65535)

	36 (0x24)
	4
	Sectors per file allocation table (FAT32)

	36 (0x24)
	1
	Physical drive number (FAT16)

	37 (0x25)
	1
	Current head (FAT16)

	38 (0x26)
	1
	Signature (FAT16)

	39 (0x27)
	4
	ID (FAT16)

	43 (0x2b)
	11
	Volume Label

	54 (0x36)
	8
	FAT file system type (e.g. FAT, FAT12, FAT16, FAT32)

Table A. Boot Sector

A partition is divided into identically sized clusters which are small blocks of contiguous space. Cluster sizes vary depending on the type of FAT file system being used and the size of the partition. Typically cluster sizes vary between 2KB and 32KB. Each file may occupy one or more of these clusters depending on its size; thus, a file is represented by a chain of these clusters (referred to as a singly linked list). These chains are not necessarily stored adjacently on the disk's surface but are often instead fragmented throughout the Data Region.

FAT Region

The File Allocation Table (FAT) is a list of entries that map to each cluster on the partition. Each of these entries records one item (see Table B). This item may be the address of the next cluster in a chain, a special ‘end of file’ character that indicates the end of a chain, a special ‘end of file’ character that indicates the end of a chain, or one of three special characters marking either a bad cluster, a reserved cluster, or an unused cluster. In the case of an unused cluster, the character used is a zero.

	 FAT12
	FAT16
	FAT32
	Description

	0x000
	0x0000
	0x?0000000
	Free Cluster

	0x001
	0x0001
	0x?0000001
	Reserved Cluster

	0x002 - 0xFEF
	0x0002 - 0xFFEF
	0x?0000002 –

x?FFFFFEF
	Used cluster; value points to next cluster

	0xFF0 - 0xFF6
	0xFFF0 - 0xFFF6
	0x?FFFFFF0 - 0x?FFFFFF6
	Reserved values

	0xFF7
	0xFFF7
	0x?FFFFFF7
	Bad cluster

	0xFF8 - 0xFFF
	0xFFF8 - 0xFFFF
	0x?FFFFFF8 - 0x?FFFFFFF
	Last cluster in file

 Table B. FAT12

Root Directory Region and Data Region

A directory table is a special type of file that represents a directory. Each file or directory stored within it is represented by a 32 byte entry in the FAT (see Table C). Each entry in the table records the name, extension, attributes, creation time, address of first cluster and the size of the directory. Aside from the Root Directory Table in FAT12 and FAT16 file systems which occupy the special Root Directory Region location, all Directory Tables are stored in the Data Region. Legal characters for DOS file names are included in the OEM character set and include upper case letters, numbers, spaces and special characters.

	Byte Offset
	Length
	Description

	0
	1
	Sequence Number

	1
	10
	Name characters (five UTF-16 characters)

	11
	1
	Attributes (always 0x0F)

	12
	1
	Reserved (always 0x00)

	13
	1
	Checksum of DOS file name

	14
	12
	Name characters (six UTF-16 characters)

	26
	2
	First cluster (always 0x0000)

	28
	4
	Name characters (two UTF-16 characters)

Table C. Directory Table

PROCESS DATA STRUCTURES

This section will describe the process data structures of MS-DOS/PC-DOS.

The COM and EXE Programs
Within MS-DOS/PC-DOS, the two types of processes that exist are the EXE program and the COM program. The COM program has a maximum size of 64K and while residing in primary memory, all code and data are mixed together. The EXE's maximum allowable size can be as large as the available primary memory. An EXE process's code, data and stack reside in different segments within primary memory. A COM program does not have any sort of header or any other identifying information contained internally. It resides on the disk as an absolute memory image. In contrast, an EXE program resides in secondary memory in a unique type of file with its own header, a checksum, a relocation map and any other pertinent information that can be used by MS-DOS/PC-DOS (Duncan, 20).

COM and EXE programs are transient programs. While the COM or EXE program is executing, the process has exclusive access to the memory assigned to it and has control of system resources while it is executing .Once the program has terminated, either normally or abnormally, it returns resources and memory allocated to it back to the operating system (Duncan, 20).

The COM and EXE programs are loaded into primary memory by the EXEC function. If there is enough transient program space, the EXEC function "allocates a block of memory to hold the new program, builds the program segment prefix at its base and then reads the program into memory immediately above the PSP" (Duncan, 20). The last thing that EXEC does is to set up the segment registers and stack and finally transfer control to the program.

The Program Segment Prefix (PSP)
The Program Segment Prefix (PSP) is a reserved space in primary memory that is 256 bytes long and is located at the bottom of a transient program's memory block. This prefix holds connections to MS/PC-DOS that can be used by the program in addition to some data that MS/PC-DOS uses. The PSP also contains interrupt handlers and a command tail (Duncan, 21).

The PSP consists of various control blocks that handle various OS related tasks. A termination handler exists at the beginning of the PSP. The first block of memory in the PSP contains the segment address of the top of the executing program. This can be used to determine if the program needs more memory or is able to release any of its current memory. The third major block of memory in the PSP is allocated for the MS-DOS/PC-DOS function dispatcher which performs operations such as disk I/O. The fourth block contains the previous contents of the interrupt vectors used for program termination. The fifth block contains the segment address of the environment block which is retrieved from the EXEC function. The sixth and last block in the PSP contains any command line parameters used by either the user or the calling program (Duncan, 21).

The COM Program
COM programs are stored in files that contain the actual machine instructions to be executed. MS-DOS does not determine if a COM file contains any executable code (there is no header associated with a COM file) and consequently, MS-DOS always must jump to the same position, 0100H, to execute the instructions within the COM file. COM programs are loaded directly into memory above their PSP (Duncan, 21).

COM programs cannot exceed 64K (including stack, data, and code space); however, this allows for faster execution time than their EXE counterpart. MS-DOS allocates all of the transient program space to an executing COM program even though it is not needed. This practice of allocating all transient program space to a COM program stemmed from previous MS-DOS programs inability to manage memory efficiently (Duncan, 24).

The EXE Program

The EXE program is of a different breed than the COM program mentioned above. EXE programs can be limitless in size; it is possible to have a running EXE program reside in all of the transient program memory space. Code, data, and the program stack are stored in separate areas within the primary memory for an EXE program. This separation of program pieces was originally intended to allow for an easy transformation to the multi-tasking environment that MS-DOS developers hoped to achieve (Duncan, 28).

An EXE file is placed in primary memory above its PSP. The separate modules (code, data, and stack) can be place in any order above the PSP. The EXE contains within it a header file that has information regarding where to begin execution. The header also contains other information such as a pointer to the environment-block and a checksum (Duncan, 29).

Summary

While MS-DOS/PC-DOS did have commercial success in the 80’s and early 90’s, it lacked the ability to multi-task, allow multiple-users and did not have a graphical interface. The absence of these features led to its demise and it was soon replaced by other operating systems. Various attempts at incorporating these features into MS-DOS/PC-DOS did appear but with little or no success.

Processes in MS-DOS/PC-DOS can exist in three basic states: running, ready, or blocked. The two main types of process data structures in MS-DOS are the EXE and the COM program. For file management, MS-DOS/PC-DOS uses the FAT file system. There are four main sections with FAT: the Boot Sector, the FAT Region, the Root Directory Region, and the Data Region.

Works Cited

Duncan,R. (1988). Advanced MS-DOS programming. Redmond, WA:Microsoft Press.
Jc (2000). “Operating Systems - Some Theory.” URL:

http://www.engr.udayton.edu/faculty/jloomis/ece314/notes/carch/node10.html#fig:tsa
Coulson, Geoff (1998). “Process States.” URL:

http://www.comp.lancs.ac.uk/computing/staff/geoff.html
On Time Real-Time and System Software (2005). “RTKernel - Real-Time Multitasking Kernel for DOS.” URL: http://www.on-time.com/rtk45.htm
Dagunduro Oluwabunmi. “Processes.” URL: http://homepages.uel.ac.uk/u0209451/PROCESSES.htm
Nutt, Gary (2004). Operating Systems Third Edition. University of Colorado, Boulder: Pearson Education, Inc.

Wikipedia. “MS-DOS” URL:

http://en.wikipedia.org/wiki/MS-DOS
“The OS Files” URL:

http://www.theosfiles.com/os_dos/ospg_dos_msdos.htm
The Linux Information Project (2005). “MS-DOS: A Brief Introduction” URL:

http://www.bellevuelinux.org/ms-dos.html
PAGE
9

