

LynxOS
RTOS (Real-Time Operating System)

Stephen J. Franz
CS-550 Section 1
Fall 2005

 1

1 Summary

LynxOS is one of two real time operating systems (RTOS) developed and marketed by
LynuxWorks of San José, California. LynxOS is a mature operating system that was
originally developed in 1988. LynxOS and LynxOS-178 were designed for systems
where absolute determinism, specifically hard real-time performance, is required. The
focus of this paper is the list of LynuxWorks design goals and the approach used to
develop LynxOS. Of special interest is the LynuxWorks-patented approach designated as
kernel threads and priority tracking. As a final wrap up, we look at the overall success of
LynuxWorks and the LynxOS.

 2

2 Table of Contents

1 Summary __ 1
2 Table of Contents __ 2
3 Main Body___ 3

Goals of Real Time Operating Systems (RTOS)_________________________ 3
Who is LynuxWorks and what is LynxOS?____________________________ 3
LynxOS Design Goals __ 3
LynxOS Approach __ 4

Process Management__ 4
Address Space Protection___ 6
Utilization of Unix and POSIX APIs_________________________________ 6
LynuxWorks Success ___ 6
Conclusion___ 6

4 Figures and Tables___ 8
5 Bibliography __ 10

 3

3 Main Body
Goals of Real Time Operating Systems (RTOS)

Real time operating systems need to respond to events in a timely and predictable
manner. By definition, real time means that missed or late responses by these systems
constitute a failure. For hard real-time, a failure would likely lead to catastrophic
consequences up to and including loss of human life. This is the case for aircraft
collision avoidance, anti-lock brake, pacemaker and anti-missile systems. For soft real-
time applications like communication switching systems and streaming audio or video,
predictable response is required but occasional failures can be tolerated.

Who is LynuxWorks and what is LynxOS?

LynxOS and LynxOS-178 are embedded real time operating systems marketed by
LynuxWorks of San José, California. LynxOS, the first real time operating system
developed by LynuxWorks, was introduced in 1988. LynxOS-178 was built on the
LynxOS framework but was developed for systems seeking to meet the DO-178B
standards. For the sake of this paper, it is sufficient to state that DO-178B is a standard
that provides a means of certifying new aviation software. Additional details regarding
the DO-178B standard are beyond the scope of this paper.

The balance of this discussion focuses exclusively on the LynxOS product. It should be
noted at this point that much of the available information about LynxOS came directly
from the LynuxWorks web site or from documents and articles authored by LynuxWorks
representatives. While this should not have an impact on the available facts, opinions in
some cases could prove to be somewhat biased.

LynxOS Design Goals

Four design goals outlined by Vik Sohal, LynuxWorks Technical Sales, are summarized
below:

1. The operating system kernel had to be preemptive and reentrant. This was
important so time-critical tasks will execute promptly.

2. The kernel supports multithreading. User programs, device drivers and other

kernel services can create their own tasks that are called kernel threads. More
detail on kernel threads including scheduling and advantages are provided later in
this paper.

3. LynxOS uses a processor's page memory management unit (MMU) to provide

each instance of a user process its own protected logical address space. The MMU
also protects the kernel by placing it in a separate address space.

 4

4. LynxOS utilizes Unix and POSIX APIs, allowing:
o a variety of Unix programs to be ported to LynxOS and
o offering a shallow learning curve for those programmers already familiar

with the interface

LynxOS Approach

In order to achieve the first two goals (prompt execution and multithreading),
LynxWorks developed and patented techniques known as kernel threads and priority
tracking. To address goal three (memory protection), LynuxWorks utilizes the
processor's page memory management unit (MMU). For the last noted goal (portability
and less steep learning curve), LynxOS utilizes Unix and POSIX APIs. Each of these
approaches is discussed below.

Process Management

In order to explore the techniques known as kernel threads and priority tracking we need
to understand the issues associated with task scheduling and execution.

The basic LynxOS scheduling entity is the thread and LynxOS scheduling is preemptive,
reentrant and based on one of three selected scheduling policies:
§ First-In First-Out
§ Round Robin
§ Priority Based Quantum – Lynx proprietary policy that is similar to round robin

but includes a configurable time quantum for each priority level.

A primary issue with task scheduling is known as priority inversion. As shown in figure
1, priorty inversion is the situation where a high priority task is running but is preempted
by an asynchronous interrupting device for a lower priority task. Priority inversion can
also be seen as hardware interrupts or kernel processes that steal cycles from high priority
tasks and degrade an application’s ability to meet real-time deadlines. In general, routine
processing in most systems can lead to problems where high priority processes find
themselves constantly interrupted by hardware events

Asynchronous interrupting devices are most any unit that generates a requested or
unsolicited signal that supplies the system with information. Examples of these include,
but are not limited to: network interfaces, console displays, keyboards, disk controllers
and external timers.

In order to understand how LynuxWorks deals with priority inversion, it is important to
understand that LynxOS is POSIX-conformant and that the basic LynxOS scheduling
entity is the thread. This means that threads are the running entities of LynxOS.

 5

The operating system kernel is a large, monolithic program that seldom offers predictable
real-time response. Further, most operating systems make a strong distinction between
internal operation and the functioning of user processes. This means that the operating
system kernel can supersede user processes and delay routine processing.

By the LynxOS approach, the driver's interrupt handler does a minimum of work and
signals the kernel thread that interrupt-related data is available. LynxOS then treats these
threads like normal user threads, with software rather than interrupt priorities. If LynxOS
implemented kernel threads by themselves, the issue of priority inversion would still
exist. As shown in figure 2, by incorporating a technique known as priority tracking,
kernel threads can process interrupts but, at the same time, will be scheduled along with
user threads based on an “appropriate” thread priority.

The previous statement fails to explain how an appropriate thread priority is determined.
This determination is a function of priority tracking. LynxOS is divided into 256
priorities. These priorities are further subdivided to make 512 priorities. This includes
the original 256 plus a half step above each of the original priorities. Kernel threads
begin their existence with a very low priority (usually 0) as created by a driver. When a
user thread opens the device, the kernel thread promotes its own priority and "inherits"
the priority of the user thread opening the device. If another user thread of higher priority
opens the device, the kernel thread bumps its priority up to match the other thread; when
the I/O is complete the kernel thread returns to the next pending thread's priority level, or
to its starting level. With the changes, we can see that the kernel thread tracks or follows
the priority of device that calls it. The following example demonstrates how the priority
of the kernel thread tracks the user threads that opened the device and cause the kernel
thread to be created.

Example:

 Kernel Thread
 Priority
Kernel Thread initial creation 0
User thread (priority 10) opens device - kernel thread promotion 10
User thread2 (priority 20) opens device – kernel thread promotion 20
User thread2 completes – kernel thread demotion 10
User thread3 (priority 60) opens device – kernel thread promotion 60
User thread4 (priority 30) opens device – kernel thread remains unchanged 60
User thread3 completes – kernel thread demotion 30
User thread4 completes – kernel thread demotion 10
User thread2 completed – kernel thread demotion 0

As the kernel thread goes about servicing any interrupts associated with the device, it
does so in step with the user thread consuming (or producing) the data. The kernel thread
priority increases as higher priority user threads open devices thus causing kernel thread
to be created. Likewise, the kernel thread priority decreases as the associated user thread
completes.

 6

Address Space Protection

As noted above, LynxOS had a design goal to utilize a processor's page memory
management unit (MMU) to protect each processes logical address space. The MMU also
protects the kernel by placing it in a separate address space.

Most competing RTOS products do not offer the flexibility and memory protection
afforded by a complete thread and process model, and rely on unprotected tasks running
in a single flat address space. (LynuxWorks (2005d))

The MMU is used to physically isolate processes from each another so that they cannot
trample on each other's memory. The MMU translates the virtual addresses referenced
by the thread into physical addresses. If a process attempts to address a page that is not
currently mapped to it, the MMU generates an exception.

The MMU also allows the process’ memory regions to grow and shrink in order to meet
changing needs of the executing thread. With this, each process has its own protected
address space and can communications between processes through kernel services.

Utilization of Unix and POSIX APIs

As the final of the four goals note, LynuxWorks wanted to insure the portability and
usability of LynxOS. In order to achieve portability, 90% of LynxOS is written in C.
By utilizing readily available interfaces, the development learning curve is substantially
flattened and allows programmers that already know the APIs to quickly become
productive.

LynuxWorks Success

LynuxWorks is a privately held interest with 75 employees and sales of $16.8 million for
the fiscal year ended April 2005. The fact that LynxOS has been available for more than
16 years and by review of the impressive list of customers shown in table 1, it can be
inferred that LynuxWorks products are both commercially and economically successful.

Conclusion

LynuxWorks established four design goals including prompt execution, multithreading,
memory isolation and portability/usability. Development and implmentation of kernel
threads along with priority tracking and utilization of POSIX thread scheduling allows
LynxOS to achieve the first and second goal. The third is achieved through the usage of
MMC and the fourth is fulfilled by the fact that LynxOS was primarily developed using

 7

C and by adhering to POSIX standards. Together these steps make LynxOS a real time
operating system that is utilized by an impressive list of customers across multiple
industries.

 8

4 Figures and Tables

Table 1

Partial list of LynxOS/LynxOS-178 Customers and Applications
USAF – KC-135
Boeing 777 - cabin services system
NASA SLR2000 Satellite Laser Ranging System
Bombardier Challenger 300 Flight Display
Shipboard Self-Defense System
StarWorks Video Networking Software
Paradise Datacom Satellite Data Modems
Lucent – MultiMedia Comminications eXchange Server (MMCX)
Viking Power Plant Control Room
U.S. Mail Sorting by Scio Systems
CDS’ M6000 Data Acquisition System (Jet Engine Vibration analysis systems)

Figure 1

In the above scenario, data is being requested for low priority process. Without kernel
threads, hardware interrupts would trigger when the data becomes available. Since
hardware interrupts run at higher priority than processes, the interrupt will pull resources
from the high priority time-critical process.

 Interrupt Processes
 Hardware Software

Highest Priority

Lowest Priority

Highest Priority

Lowest Priority

 9

Figure 2

 Interrupt Processes
 Hardware Software

In the above scenario, data is again being requested for a low priority process. With
kernel threads and priority tracking, the device is opened and a kernel thread is created
and scheduled with a priority that is consistent with the requesting process. With this, the
kernel thread will be processed at an appropriate time as determined by the scheduling
rules without pulling resources from the higher priority time-critical process.

Highest Priority

Lowest Priority

Low Priority

Highest Priority

Lowest Priority

 10

5 Bibliography

Kevin M. Obenland (2001), “POSIX in Real-Time”; URL:

http://xtrj.org/collection/posix_rtos.htm

LynuxWorks (2005a), “Partitioning Operating Systems Versus Process-based Operating

Systems”; URL: http://www.lynuxworks.com/products/whitepapers/partition.php

LynuxWorks (2005b), “LynxOS RTOS 4.0 Feature List”; URL:
http://www.lnxw.net/rtos/lynxos40features.php

LynuxWorks (2005c), “What is DO-178B”; URL:

http://www.lynuxworks.com/solutions/milaero/do-178b.php3

LynuxWorks (2005d), “The LynxOS 3.0.1 Performance Page”; URL:
http://www.ro.feri.uni-mb.si/predst/martin/4_12_2000/301specs.html

LynuxWorks (2005e), “LynuxWorks Patented Technology Speeds Handling of Hardware

Events”; URL: http://www.lynuxworks.com/products/whitepapers/patentedio.php3

LynuxWorks (2005f), “Processes, Name Spaces and Virtual Memory”; URL:

http://www.lynuxworks.com/products/posix/processes.php3

LynuxWorks (2005g), “Threads in POSIX”; URL:

http://www.lynuxworks.com/products/posix/threads.php3

OCERA (2002), “WP1 - RTOS State of the Art Analysis”; URL:

http://www.ocera.org/archive/deliverables/ms1-month6/WP1/D1.1.html
(OCERA = Open Components for Embedded Real-Time Applications)

Scott Spetka (2004). “Real-time Linux”; URL:

http://www.cs.sunyit.edu/~scott/realtime/RTLinux.notes

Vik Sohal and Mitch Bunnell (1996), “Sophisticated real-time products need an OS

designed for real-time work”; URL: http://www.byte.com/art/9609/sec5/art1.htm

http://xtrj.org/collection/posix_rtos.htm
http://www.lynuxworks.com/products/whitepapers/partition.php
http://www.lnxw.net/rtos/lynxo
http://www.lynuxworks.com/solutions/milaero/do
http://www.ro.feri.uni
http://www.lynuxworks.com/products/whitepapers/patentedio.php3
http://www.lynuxworks.com/products/posix/processes.php3
http://www.lynuxworks.com/products/posix/threads.php3
http://www.ocera.org/archive/deliverables/ms1
http://www.cs.sunyit.edu/~scott/realtime/RTLinux.notes
http://www.byte.com/art/9609/sec5/art1.htm

	1 Summary
	2 Table of Contents
	3 Main Body
	Goals of Real Time Operating Systems (RTOS)
	Who is LynuxWorks and what is LynxOS?
	LynxOS Design Goals
	LynxOS Approach
	Process Management
	Address Space Protection
	Utilization of Unix and POSIX APIs
	LynuxWorks Success
	Conclusion

	4 Figures and Tables
	Partial list of LynxOS/LynxOS-178 Customers and Applications
	Figure 1
	Figure 2

	5 Bibliography

