Mike Thomsen

Jim Ford-Fleming

Overview of the file system

A formatted file system is a collection of null characters (‘\0’ in Java and C) that spans at least one five hundred twelve byte cluster. Each file uses a twelve byte area that holds the name of the file, a four hundred eighty byte long region that stores data and a twenty byte pointer to the next cluster in the file, giving it approximately 195,312,500,000,000,000 eight clusters as its maximum size.

There is a data structure that is created when the file system is first calculated upon being mounted. This bitmap, or free cluster list, is an array of bytes equal in size to the number of clusters discovered. Once it has been created, the file system is then read in order to populate it with a list of used clusters and when a used cluster is discovered, its entry in this list is flagged with a value of one indicating it is being used. This list is used to assist in skipping over more costly read operations such as finding the first cluster in a file because if a cluster is marked as one, it cannot be used thus it is not even read at all by some and for others, the opposite is true.

A file system is created using a standard factory method that mounts a RandomAccessFile around the specified file in the mount operation. With the exception of seek, all standard directory-less file operations are present. Each method call to the file system causes the thread that it is running on to block as each method that reads from the file is designated “synchronized.”

The FilePointer object that is created by the open operation is a standard JavaBean which provides accessor methods for the file system position, name, a internal file position and other properties. The reason that we chose to use this method of creating a file pointer was that it is more flexibility than associating a file pointer with an integer key to an internal data structure within the file system. Originally, it was decided to create a wrapper around the FileSystem object that would take advantage of this by using the getFileSystem method to allow for the illusion of directory/mount point support, but there was not enough time to implement that.

The heavy use of recursion that was used for the read and write methods was what enabled these to be simplified so much. They keep calling themselves with substrings of the requested data until they have completely written or built the appropriate result string of data. The delete operation works like this as well, albeit it has a special support method that starts at the first cluster and writes null characters (‘\0’) to the file system until it has replaced the file to be deleted.

To run the format utility, it will be necessary to have Java 5.0 installed on the computer that it is being run on. Open the folder with FormatUtility.jar in it and then double click on that jar file. Then you go to File->New in the format utility, select a place to save the file. Once you’ve done that, slide the slider as far as you want, but be warned it can generate very large files if you go far along it. Then click the create button and it will format a file system for you to use. To compile these jar files, it will be necessary to use the Netbeans IDE. The FileSystem and FormatUtility directories contain Netbeans projects to make it easier to build these projects.

