Exokernel: Design and Implementation
CS 450 Section 1 Fall 2005

Gabriel Beltran

John Blackman

David Martin

Kurt Rohrbacher

Matthew Sechrist
Abstract

This text is intended to provide a basic overview of the major design considerations of an exokernel operating system. The design of the exokernel allows for low-level hardware manipulation and control by application programs. Since mainstream operating systems provide a large number of generalized abstractions, system resources must be dedicated to the maintenance of these abstractions, and the hardware must operate in the (often inefficient) manner these abstractions dictate. By allowing applications to control the hardware and manage their own resources, the kernel need only export a safe (secure) and minimal interface. Since many applications will not be able to run on such a low-level system, higher-level OS functionality can be imported from libraries (libOSes). These can be distributed across a network, or reside in system storage; either way, they are only present in memory when an application requests them. The exokernel offers the ability for applications to customize the use of system resources, and to control the operation of the hardware. This introduces problems with kernel portability and modification, but can greatly increase system performance, and can remove the resource limitations placed on applications.
Table of Contents

Abstract

pg. 2

Motivation for Designing and Using an Exokernel

pg. 4
Overview of Hardware Multiplexing

pg. 5
· Goals

pg. 5
· Secure Binding

pg. 5
· Resource Multiplexing

pg. 6
· Revocation and Resource Recovery

pg. 6
Application Level Networking on an Exokernel

pg. 6
· Network Software Architecture

pg. 6
· Functions of the Kernel

pg. 7
· ExOS Networking Abstractions

pg. 7
· UDP/IP

pg. 7
· TCP/IP

pg. 7
· Listen/Accept

pg. 7
· Timers and Timeouts

pg. 7
· Time Wait

pg. 8
- Summary of Exokernel Networking

pg. 8
The Exokernel Storage and File systems

pg. 9

- XN: The Exokernel File System

pg. 9

- Read

pg. 10

- Write

pg. 10

- C-FSS: A Library File System

pg. 10
Bibliography

pg. 11

 SEQ CHAPTER \h \r 1Motivation for Designing and Using an Exokernel
Since modern consumer operating systems need to be able to supply an increasingly wide range of abstractions to support more diverse applications, more and more resources are being used up to define hardware and operating system abstractions that cannot be modified, expanded, or replaced. In fact, it seems to be the trend that any new advances made in hardware are used up by larger and less efficient operating systems almost to the point where the end use never realizes that hardware has, in fact, been upgraded. This is certainly not solely the fault of the operating system manufacturer: there just isn’t any way to abstract resources in an efficient manner that can satisfy the needs of all applications. Because of this, systems suffer from the overhead that is required to maintain these large abstractions, even when they will never be used, or when another, simpler approach may serve a specific application better. This has prompted the investigation of an operating system that has fewer build-in abstractions, but can still access libraries of higher level functionality. Several designs are currently being researched, including an extensible operating system, or an operating system that can be abstracted and "added to" as more operating system functionality becomes necessary. These "plug-in" abstractions make up libraries of operating system functionality, called libOSes.
In order to make such an operating system not only worthwhile, but feasible, a minimal kernel should be available to provide the basic ability to multiplex the hardware in a safe environment, and should export an interface that exposes hardware wherever possible. The exokernel should be minimal in the functionality it provides, and follows the extensible microkernel design. So the basic functions of the exokernel are the ability to multiplex hardware, protect resources between processes/applications, and import abstractions from libOSes that will add more mainstream OS functionality (i.e., these libOSes make it possible to export a higher level virtual machine).

Clearly, removing the numerous abstractions that a modern consumer operating system provides can lead to vast improvements in resource efficiency (both basic hardware and abstract resources). No system calls are necessary to access memory or system hardware since applications can be expected to manage their own resources. However, in order to safely implement an operating system that relies on application programs to handle their own resource management, the exokernel must export an interface that contains this security while exposing the hardware as closely as possible. Because of these strict requirements (maximize power, minimize functionality, maintain security between resources and processes), the interface to allow untrusted applications to manage their own resources is extremely difficult to implement. Specifically, if modifications are made in the exokernel, application software that uses the exokernel may need to be recompiled, modified, completely rewritten, or even thrown out.

On the other hand, though, most OS abstract functionality is implemented in libOSes which can more easily be modified than the kernel itself. Knowing this, one might wonder what the effect of modifications to a higher-level libOS would really be on applications when compared to modifications to the kernel. Since libOSes are implemented on top of an exokernel, modification of libOSes makes debugging the system much quicker and simpler than modifying the kernel. Consider the cycle of events necessary to modify and debug an operating system kernel: modify, recompile, REBOOT, debug. When modifications are performed on a higher level (on top of an operating system), this cycle becomes: modify, recompile, RELINK, debug. Over time, the replacement of the REBOOT phase by the RELINK phase significantly reduces the time necessary to modify and debug the operating system and whatever abstract functionality it may implement in libOSes.

If processes are allowed to manage some hardware resources, it is conceivable that they may also manage their own CPU time slices. Although it would be very simple to implement a basic CPU scheduler as an array of processes within the exokernel, if processes can cooperate through the use of shared memory or a shared message-queue, CPU cycles and memory dedicated to context-switching can be greatly reduced (in the best case, from 4 context switches down to only 2 context switches). Similarly, if device I/O is managed within applications, CPU scheduling techniques can be further simplified.

Because such a minimal degree of functionality is included in the exokernel, its design and implementation is relatively simple: all that is required is secure hardware multiplexing and the ability to use unspecified higher-level abstractions. From the perspective of an operating system, this is all an exokernel is: everything else is implemented in libOSes, at the application level.

Overview of Hardware Multiplexing
Three Important Goals
One of the defining factors of an exokernel operating system is to allocate hardware resources and to do it securely among many users. The goal is to give untrusted applications near-complete control of the CPU, Main Memory, the hard disk, low and high level cache, etc. This concept is often referred to as distributed control, whereas the more traditional Operating Systems tend to centralize control to the abstractions it provides. In order to accomplish this important goal of allowing applications control of the hardware, the exokernel must be responsible for three core tasks:

· Track ownership of resources

· Perform access control to ensure security policy is not violated

· Revoke access to certain resources

In order to implement all of these ideas successfully, the exokernel has to know which applications have access privileges to certain objects like files, directories and network connections. Since an exokernel itself does not define these privileges, it is up to the application-level software to determine who is permitted and who is not permitted to access these high-level objects. This is accomplished using a technique called secure binding.

Secure Binding

Secure binding separates the authorization from the actual use of the object. This means that an application can gain controlled access to the resource and not have to get high-level authorization for each subsequent request to use the resource. Secure binding is used to multiplex physical memory, frame buffers and network devices. When multiplexing physical memory, secure binding can be implemented using self-authenticating capabilities and address translation hardware. When an application allocates a physical memory page, the exokernel creates a secure binding by recording the owner and read/write capabilities specified by the application. It does this so that all of a system’s resources can be tracked properly. Once the application is given a physical memory page, it has the power to change its capability and deallocate it. As part of the security design, exokernels guard every access to a physical memory page by requiring that the capability be presented by the application requesting access. This enables applications to grant access rights to other applications without kernel intervention.

Resource Multiplexing

Multiplexing a frame buffer is a difficult task because of the complex device interfaces and because assigning ownership to pieces of a device can be difficult without detailed knowledge of the device. It is possible to partition devices like a disk drive with a capability-based method similar to the one used for physical memory but because of the value of a centralized I/O scheduling policy, it is more desirable to assign the ownership of an entire device to a single application. This low level protection mechanism makes it easier to implement secure binding efficiently. If there is no hardware capability to multiplex a device, secure bindings can be implemented by the exokernel. However, managing network devices present a greater challenge because of the need to know various protocols. Without this knowledge, it would be impossible to identify ownership of a packet. In some cases, there may be a uniform way of demultiplexing incoming data streams from the network but in general, there needs to be a way of distributing and interpreting packages correctly. One way of solving this problem is to implement what is called a “package filter.” Package filters can distribute incoming messages among applications and have the applications interpret the contents of the package. This allows the exokernel to not have specific knowledge of protocols.

Revocation and Resource Recovery

Once resources have been allocated to a process, there must be a way to reclaim them. This process is referred to as revocation. Revocation is done invisibly in most traditional operating systems. This means that each application is not informed that a resources has been deallocated to it by the OS. One drawback of this implementation is that each application has no control over deallocation and no knowledge of whether resources are scarce. Exokernels use visible revocation. This allows applications to react when being informed that a resource is being made unavailable to them, allowing the application to save the data that was being used by the resource before that data is destroyed. There also exists an “Abort Protocol” for processes that are uncooperative. If an application is not responding to revocation requests made by the exokernel then the exokernel will give a countdown to the application. This gives the application a determinate amount of time it can use the resource before that resource is forcibly deallocated by the exokernel.

Application-Level Networking on an Exokernel

Network Software Architecture

The Xok/ExOS’s networking system allows applications to interact almost directly with the network interface, using a small kernel and libraries that provide applications with networking abstractions that correspond to their needs. Outbound packets are sent directly from the application memory. The applications invoke the “send packet” system call in order to add descriptors of outbound packets to the kernel’s first-in first out (FIFO) send queue. Inbound packets are received by the network device drivers and then passed into the proper kernel. In order to identify the destination of each packet a packet filter engine is used and then it is copied into one or more rings of preregistered buffers shared between the kernel and applications.

Functions of the Kernel

This section describes the components that allow for fast and flexible application-level networking. Table 1 gives a brief overview of the functions of the kernel and how it helps in efficient application-level networking.
Table I. The Main Kernel Functions for Supporting Application-Level Networking.

From: http://www.ece.cmu.edu/~ganger/papers/p49-ganger.pdf

	Transmit
	net_xmit
	Asynchronously transmit a packet on a given network interface

	Demux
	dpf_insert

dpf_delete

dpf_ref
	Insert a filter and associate a packet ring with it

Dereference a filter

Add a reference to a filter (e.g., for a new process)

	Buffering
	dpf_pktring

pktring_setring

pktring_modring

pktring_delring
	Route filter’s matches to a new packet ring

Set up a new packet ring with specified set of entries

Add, delete, or replace packet ring entries

Delete packet ring from kernel’s view

	Others
	wkpred

insert_pte
	Install wakeup predicate

Insert page table entry

ExOS Networking Abstractions

This sections looks at the key mechanisms used in ExOS to obtain efficient application-level network services.

UDP/IP

UDP is a simple, connectionless protocol that has few built-in protocol activities. To create a UDP end-point, ExOS builds a DPF filter to identify IP packets that specify UDP as the protocol and have the desired source and destination IP addresses and UDP port number values. The source IP address, the destination IP address, and the source UDP port number can be left as wildcards, which means that they are not checked during DPF’s pattern match for this end-point’s filter. Once an application has made itself an end-point, it can receive packets and do whatever they want with it.

TCP/IP

TCP and UDP endpoints are established in much the same way, except that TPC is a much more involved protocol that requires additional support from the underlying system in order to function effectively and correctly. Some examples of TCP protocols are listed below.

Listen/Accept
TCP needs to have a listener and a sender in order to work properly. This protocol includes filters that ensure the correct subset of the listener’s packets is received.

Timers and Timeouts
In order to trigger certain activities, TCP requires timers. ExOS supports WK add-ons and context switch add-ons that allow timeouts and packets that have arrived to be handled in a timely efficient manner. These add-ons allow an application library to register functions to be called by ExOS each time a context switch upcall is being processed or a WK predicate is being downloaded in the given application. The application’s context switch add-ons are called by ExOS when the process is given the processor for a quantum. These add-ons work in the background without losing correctness, but they optimize the speed the packets are handled.

Time Wait

In typical TCP, the TIME_WAIT process is used to ensure that a previously processed packet can not be processed as part of a new connection. At first, ExOS would wait for all of the TIME_WAIT connections to be closed before allowing a process to terminate, but this caused problems with certain applications. Currently, ExOS waits for a “child is done” signal to the parent process, in order to prevent errors.

Summary of Exokernel Networking

When all of the above are combined, a completely decentralized application-level TCP implementation is created. When this implementation has been tested, the results were excellent. “It has all of the performance benefits and flexibilities of application-level networking, and it communicates correctly with every TCP system that we have tried. In addition, because it is at the application level, we found it easier to implement performance enhancements. ExOS’s application-level TCP implementation outperforms that of a popular BSD TCP by up to a factor of 2” (Ganger, et al. “Fast and Flexible Application-Level Networking on Exokernel Systems”). When all of the ExOS libraries and daemons are included, complete networking services are provided at the application level. The increase in efficiency and performance all are due in part to the NI multiplexing mechanisms in Xok and the core ExOS modules.
Test Using HTTP Servers

Several tests were run on HTTP servers using standard technologies. As seen in the figure below, the same HTTP server is shown to deliver twice the throughput when using the Xok/ExOS TCP/IP socket libraries described earlier rather than when running on
OpenBSD.
[image: image1.png]8
8

8
8

Thr(glghpul (regqnestslsecond)
8 38
8 8

== NCSA/BSD
== Harvest/BSD
= Socket/BSD
== Socket/Xok
==Cheetah

0Byte

100 Byte

1 KByte
HTTP page size

sl |
10 KByte 100 KByte

Figure 1: Throughput of different systems using the same HTTP server requesting the same page.
From: http://www.ece.cmu.edu/~ganger/papers/p49-ganger.pdf

The Exokernel Storage and File Systems

XN: The Exokernel Storage System
The goal of the Exokernel storage system is to track ownership of blocks of data without dictating on-disk metadata structures. Within each libOS is a libFS. The Exokernel needs to do this multiplexing among multiple library file systems. The idea is to give the libFSes as much direct control over file management as possible while still protecting the files from unauthorized access. To perform this correctly, the storage system must meet four basic requirements.

1. Creating new file formats should be simple and lightweight without requiring any special privileges.

2. The protection system should allow multiple libFSes to share files at the raw disk block and metadata level.

3. The storage system should be as close to hardware efficient as possible.

4. The storage system should allow cache sharing among the libFSes and allow them to address cache coherence, security and concurrency issues.

The Exokernel’s solution to this was the development of the XN storage system. What XN does is to employ UDFs. UDFs are metadata translation functions that are specific to each file type. XN uses these to analyze metadata and translate it into a form that is simple and understandable to the kernel. The good thing about UDFs is that they allow the kernel to safely and efficiently handle any metadata layout without actually having to understand the layout itself.

XN uses the following requirements to allow application control with protected sharing:

1. Unauthorized access is prevented by guarding every operation on the disk. To speed the process, XN uses secure bindings. It moves the access checks to bind time instead of checking each time the data block is accessed.

2. XN must be able to determine what rights a principal has to a disk block. To achieve this, it uses the UDF mechanism to protect the disk blocks using the libFSes metadata, rather that guarding each block individually.

3. XN has to make sure that a system crash will not accidentally grant libFS access to data that it has freed or not allocated. This means that metadata that uses pointers to uninitialized metadata cannot be written, and that the reallocation of the block cannot be performed until the pointers have been removed.
XN also follows three rules for achieving strict file system integrity across a crash:

1. Never reuse an on-disk resource before nullifying all previous pointers to it.

2. Never create persistent pointers to structures before they are initialized.

3. When moving an on-disk resource, never reset the old pointer in persistent storage before the new one has been set.
The rules are fairly simple but difficult to enforce efficiently. XN allows the 1ibFSes to address this by enforcing the rules without legislating how to follow them. The libFSes can choose any operation order which satisfies the constraints.
The libFS sets itself up to use the XN upon bootup. To do this a libFS loads its root(s) and any types it needs from the root catalogue into the buffer cache registry.

Read

Reading a block from disk is a two-stage process.

1. The 1ibFS creates entries in the registry by passing block addresses for the requested disk blocks and the metadata blocks controlling them. The parents must already exist in the registry. The libFSes are responsible for loading them. XN determines if the requested blocks are controlled by the supplied metadata blocks and, if so, installs registry entries.

2. The 1ibFS initiates a read request, while also optionally supplying pages to place the data in. A 1ibFS can load any block in its tree by traversing from its root entry, or by starting from any node cached in its registry. To read a block before its parent is known, a 1ibFScan issues a raw read command. If the block is not in the registry, it becomes an “unknown type” and a disk request is initiated. This block cannot be used until after it is bound to a parent by the first stage of the read process, which determines its type and allows access control to be performed.

Write
 A libFS writes blocks to the disk by passing the blocks to write to XN. If the blocks are not in memory, or they have been set in memory by some other application, the write is stopped. The write can also fail if any of the blocks are tainted and reachable from a persistent root. Otherwise, the write succeeds. If the block was tainted and now is not (either by eliminating pointers to uninitialized metadata or by becoming initialized itself), XN modifies its state and removes it from the tainted list. Applications control what is fetched and what is paged out when and in what order. This allows them control of many disk management policies and enforces strong stability guarantees.

C-FFS: A Library File System

C-FFS stands for the “co-locating fast file system “. It is a UNIX-like library file system that was built with special reference to the protection guarantees that is provides. XN provides the basic protection guarantees needed for file system integrity.

C-FFS makes four main additions to XN’s protection mechanisms:

1. It maps the UNIX representation and semantics of access control (uids and gids, etc.) to those of Exokernel capabilities.

2. C-FFS guarantees UNIX specific file styling: for example, directories contain legal, aligned file names.
3. C-FFS performs locking to ensure that its data is always recoverable and disk writes only occur when metadata is internally consistent.

4. C-FFS ensures that certain state transitions are implicit on certain actions.

Bibliography

Briceno, R., Engler, Ganger, G., D., Grimm, R., Hunt, R., Janonotti, J., Kaashoek, Frans M., Mackenzie, K., Mazieres, D., Pinckney, T. (1997). “Application performance and flexibility on exokernel systems.” URL: http://pdos.csail.mit.edu/papers/exo-sosp97/exo-sosp97.html
Engler, D., Kaashoek, M. Frans, O’Toole Jr., J. (1995). “Exokernel: an operating system ar
architecture for application-level resource management”. URL:

http://citeseer.ist.psu.edu/cache/papers/cs/5920/ftp:zSzzSzftp.cag.lcs.mit.eduzSzmultiscalezSzexokernel.pdf/engler95exokernel.pdf
Ganger, et al.“Fast and Flexible Application-Level Networking on Exokernel Systems.”

ACM Transactions on Computer Systems, Vol 20, No. 1, February 2002.

http://www.ece.cmu.edu/~ganger/papers/p49-ganger.pdf
PAGE
10
Page

