Apple’s Macintosh OSX Panther

CS555 Section 3

Tomomi Kotera

Table of Contents

Table of Contents ………………………………………………………. Page 1

Introduction …………………………………………………………….. Page 2

Overview …………………………………………………………………Page 2


CPU Scheduling ……….…………………………………………………Page 3

Symmetric Multiprocessing (SMP) …..…………………………………Page 5

Memory Protection ………..……………………………….………....…Page 6

Virtual Memory …………..……………………………….…..…………Page 7

Technical and Commercial Success of Mac OS X ….…….……………Page 11

Conclusion ….…………………………………………….….……………Page 13

Bibliography……………………………………………………………..  Page 14

Introduction

The Mac OS X Panther operation system has met with both technical and commercial success. Since the debut of Mac OS X in 2001, its features have continued to improve. The initial system Mac OS X 10.1 was originally shipped in September 2001 and was referred to as Puma; Jaguar, version 10.2, was shipped in August 2002, and Panther, the current version, was shipped in October 2003.  The focus of this paper is on the key technologies that have made Mac OS X Panther a technical success such as CPU scheduling, symmetric multiprocessing, memory protection, and virtual memory; we begin with an overview of the MAC OS X operating system. 
Overview of Mac OS X Panther

Mac OS, from Apple Computer, can be considered two families of operating systems: the older and now unsupported "classic" Mac OS (the system that shipped with the first Mac in 1984 and its descendants, culminating with Mac OS 9), and the newer Mac OS X.  

Mac OS X Panther is a UNIX-based Operating System with the intuitive user interface called Aqua.  The modern core UNIX-based Operating System brings benefits such as protected memory and preemptive multitasking to Macintosh computing.  Mac OS X Panther also has a sparkling user interface capable of visual effects such as translucence and drop shadows.  The central characteristic of the Mac OS X architecture is the layering of system software, with one layer having dependencies on, and interfaces with, the layer beneath it (see Figure 1-1).  Mac OS X has four distinct layers of system software (in order of dependency):

Application Environments consists of the frameworks, libraries, and services necessary for the runtime execution of programs developed with those API.  Mac OS X currently provides five application (or execution) environments: Carbon, Cocoa, Java, Classic, and BSD Commands. 

Application Services incorporates the system services available to all application environments that have some impact on the graphical user interface.  It includes Quartz, QuickDraw, and OpenGL as well as essential system managers. 

Core Services incorporates those system services that have no effect on the graphical user interface.  It includes Core Foundation, Open Transport, and certain core portions of Carbon. 

Kernel Environment provides the foundation layer of Mac OS X. Its primary components are Mach 3.0 and FreeBSD, but it also includes networking protocol stacks and services, file systems, and device drivers. The kernel environment offers facilities for developing device drivers (the I/O Kit) and loadable kernel extensions, including Network Kernel Extensions (NKEs).  This integrated kernel environment is called Darwin and it is an Open Source technology available from www.apple.com/darwin.  The following is the components that Mach 3.0 and FreeBSD provide: 

Mach 

· support for SMP

· untyped IPC and RPC

· memory management

· support for real-time services 

· external pager 

· modular architecture 

· improved performance

BSD 

· file systems 

· networking 

· basic security policies such as user IDs and permissions 

· the system framework a mechanism for exporting APIs to the application layers 

· the BSD process model, including process IDs and signals 

· FreeBSD kernel APIs 

· Pthreads (POSIX threads implementation) 

[image: image1.png]Classic

Gore Sarvioss

Kernelenvionment





Figure 1-1 System Layer

CPU Scheduling

The kernel environment of Mac OS X, specifically Mach, provides the fundamental thread support.  Mach maintains the register state of its threads and schedules them preemptively in relation to one another.   In general, multitasking may be either cooperative or preemptive.  Classic Mac OS implements cooperative multitasking which was not very intelligent.  In cooperative CPU scheduling the OS requires that each task voluntarily give up control so that other tasks can execute, so unimportant but CPU-intensive background events might take up so much for a processor’s time that more important activities in the foreground would become sluggish and unresponsive.  On the other hand, preemptive multitasking allows an external authority to delegate execution time to the available tasks.  Mac OS X’s Mach supports preemptive multitasking in which it processes several different tasks simultaneously.   

To affect the structure of the address space, or to reference any resource other than the address space, the thread must execute a special trap instruction which causes the kernel to perform operations on behalf of the thread, or to send a message to some agent on behalf of the thread.  In general, these traps manipulate resources associated with the task containing the thread. 

Mach provides a flexible framework for thread scheduling policies.  Mac OS X supports both the multilevel feedback queue scheduling and round-robin (RR) scheduling algorithm.  The multilevel feedback queue scheduling algorithm partitions the ready queue into several separate queues and allows a process to move between queues.  In the multilevel feedback queue scheduling algorithm, each run queue has various priorities that are handled in different ways.  A multilevel feedback queue scheduling thread’s priority is raised and lowered to balance its resource consumption against other threads. Round-robin threads execute for a certain time quantum (time slice), and then are put at the end of the queue of threads of equal priority.  Setting a round robin thread’s quantum to infinity effectively makes the thread run-till-block within its priority. 

Mac OS X internally has 128 priority levels, ranging from 0 (lowest priority) to 127 (highest priority).  They are divided into several major bands according to their characteristics, as described in Figure 1-2.  0 through 51 correspond to what is available through the traditional BSD interface. The default priority is 31.  52 through 63 correspond to elevated priorities.  64 through 79 are the highest priority regular threads.  80 through 95 are for kernel mode threads.  Finally 96 through 127 correspond to real-time threads, which are treated differently than other threads by the scheduler.

	Priority Band
	Characteristics

	Normal (0-51)
	Normal application thread priorities

	System high priority (52-79)
	Threads whose priority has been raised above normal threads

	Kernel mode only (80-95)
	Reserved for threads created inside the kernel that need to run at a higher priority than all user space threads (I/O Kit workloops, for example)

	Real-time threads (96-127)
	Threads whose priority is based on getting a well-defined fraction of total clock cycles, regardless of other activity (in an audio player application, for example).


Figure 1-2 Thread priority bands
Threads can migrate between priority levels for a number of reasons.  However, this migration is within a given band.

The scheduler treats threads marked as being real-time priority differently.  A real-time thread tells the scheduler that it needs to run for A cycles out of the next B cycles.  For example, it might need to run for 3000 out of the next 7000 clock cycles in order to keep up. It also tells the scheduler whether those cycles must be contiguous.  A real-time thread can be penalized (and may even be knocked down to normal thread priority) if it exceeds its time quantum without blocking repeatedly. 

Threads that are heavily compute-bound are given lower priority to help minimize response time for interactive tasks so that high–priority compute–bound threads cannot monopolize the system and prevent starvation.  Starvation is a steady stream of higher-priority processes can prevent a low-priority process from ever getting the CPU.  Even at a lower priority, the compute–bound threads still run frequently, since the higher–priority I/O-bound threads do only a short amount of processing, block on I/O again, and then allow the compute-bound threads to execute.

The Mach scheduler assigns priorities to incoming processes so the processes that have a higher priority are handled first and operate these mechanisms continually.  This means that threads are frequently moving up or down in priority based upon their behavior and the behavior of other threads in the system.  If multiple processes reside in the same queue, the scheduler runs Round-Robin scheduling algorithm.

Symmetric Multiprocessing
Symmetric multiprocessing (SMP) is the processing of program code by multiple processors that share a common operating system and memory subsystem.  In SMP, the processors share memory and the I/O bus.  A single copy of the operating system is in charge of all the processors.  Apple did not completely commit to total SMP for the first release of Mac OS X mainly because Apple did not have any MP hardware at that moment.  With Mac OS X Panther’s adoption of SMP, Apple has been able to ship multi-processor hardware for use as graphics workstations, high-power, servers, and more.  Multi-processor support is state-of-the-art in Mac OS X as it has been developed from the ground-up to take advantage of multiple processors from the kernel level up.  Mac OS X automatically harnesses both processors, so all of your applications benefit from the higher performance the second processor offers.  Mac OS X allocates application tasks to the processors as needed.  

Memory coherence and shared memory are the greatest challenges SMP architectures.  When a CPU reads or writes to system-memory locations, it stores the values in an on-chip, high-speed cache.  Once in cache, the CPU does not need to read the memory using the system bus, improving performance and reducing the drain on the limited system bus resources.

Because of the way cache memory works, each CPU in a multiprocessing system has its own private copy of small portions of system memory.  These copies may deviate from one another over time.  By caching memory writes, each CPU makes the main system memory incoherent because the most recent value for a cached memory location is stored within the CPU's cache memory, rather than in system memory.  In order to solve this problem, CPU monitors memory addresses placed on the system bus by other devices.  When a CPU detects a memory address on the system bus that it has cached, the CPU writes the values of those memory addresses from its cache to system memory prior to completion of the bus cycle.

Memory Protection

One of the best features of Mac OS X is protected memory.  Protected memory means that the operating system allocates a unique address space for each application or process running on the computer. Since applications and processes are isolated in their own memory space, no program can modify another program’s data unless that data also resides in its own memory space (shared memory).  By implementing this, Mac OS X becomes more crash resistant.  When one program crashes, Mac OS X will simply shut it down, close down its memory space, and let you continue working.  

One of the reasons Apple was not able to implement protected memory is that the classic Mac OS relied on a lot of non-reentrant code and on things like system global variables which are expected to be changed by applications but set correctly before a waitNextEvent().   In order to handle protected memory and still maintain compatibility all accesses to these functions and variables need to be trapped, handled, passed through to the new API's, then passed back looking like the original API's.
The mechanism used to implement the memory protection is called boundary crossings.  When a program communicates with the kernel, data cannot simply be passed from one address space to the other as you might between threads or between programs in environments like Mac OS 9 that do not have protected memory.  When the kernel needs a small amount of data from an application, the kennel do not just dereference a pointer passed in from that application, since that pointer is relative to the application’s address space.  Instead, the kernel generally copies that information into storage within its own address space.  The separation of the kernel and an application is called boundary.  When a large region of data needs to be moved, it may map entire pages into kernel space foe efficiency.  We see the same behavior in reverse when the operating system moves data from the kernel to an application.  Since it is time consuming to copy data, a data exchange causes a performance penalty.

Virtual Memory

Historically, the Mac OS used a form of memory management that has fallen out of favor in modern systems.  First of all,  in earlier versions of the Mac OS, each program had assigned to it an amount of RAM the program could use.  Users could turn on virtual memory that uses part of the system's hard drive as extra RAM if the system needs it.  While the user usually didn't have to change this setting, sometimes applications would crash when dealing with intense operations, requiring the user to increase these values.  Memory fragmentation was also rampant.  When a computer was left on for a long time in the classic Mac OS, and many applications were opened and closed, the system sometimes could not use all available memory for an application that was going to be launched.  This was because the operating system needed a contiguous segment of free memory, and after opening and closing a lot of applications, free memory could get severely fragmented.

Criticism of this approach was one of the key areas addressed by the change to Mac OS X.  Mac OS X finally does away with the whole scheme, implementing a modern sparse virtual memory scheme.  It is always on, providing up to four gigabytes of addressable space per process.  However, few machines have this much dedicated RAM for the entire system, much less for a single process.  To compensate for this limitation, the virtual memory system uses hard disk storage to hold data not currently in use.  This hard disk storage is called the “swap” space because of its use as storage for data being swapped in and out of memory.

The VM system used in Mac OS X is a descendent of Mach VM, which was created at Carnegie Mellon University in the 1980s.  The fundamental design is mostly the same, although some of the details are different, particularly when enhancing the VM system.   As with most modern operating systems, Mac OS X’s VM consists of address spaces and ways to manipulate the contents of those address spaces from outside the space.  These address spaces are sparse and have a notion of protections to limit what tasks can access their contents.  Thus, each process has an address space that can grow dynamically up to a limit of four gigabytes. As an application uses up space, the virtual memory system allocates additional swap file space on the root file system.  
There are two ways of memory management when an operating system deals with virtual memory; demand paging and segmentation.  The latest operating systems such as Windows, Linux, FreeBSD, and Mac OS X use the demand paging whereas classic Mac OS until Mac OS 9 use the segmentation.  Segmentation is a memory-management scheme that supports “user view of memory”.  In the segmentation mechanism, each program is divided into blocks of unequal size but with semantics meaning.  The addresses specify both the segment name and the offset within the segment.  Since contiguous memory is allocated for each segment for the exact amount needed (first-fit, best-fit), the operating system suffers from an external fragmentation when all blocks of free memory are too small to accommodate a segment.   On the other hand, in the demand paging, each page size is fixed and operating system uses to map sections of virtual memory into pages of physical memory.  It is called demand paging because only when a page of memory is needed it is then copied into physical memory.   Compared to segmentation, operating system with demand paging mechanism does not suffer from external fragmentation and have little problem with internal fragmentation (since page sizes are relatively small).  Runtime access is made via virtual addresses which may not correspond to locations in physical memory at the initial time of the attempted access.  In the Mac OS X, the kernel, especially Mach, is responsible for reconciling a requested access in virtual space with a location in physical memory through demand paging.
When a program reads, writes, or executes at a particular address, the corresponding page is mapped by the kernel.  This mapped area is referred to as a region.  The virtual address space of a process consists of mapped regions of physical memory.  Each region of physical memory in Mac OS X represents a specific set of virtual memory pages.  The virtual address space of a process consists of mapped regions of physical memory.  Each region or memory in the process is mapped to 4 KB of memory.  Because regions contain a given number of pages, they are page-aligned, meaning the starting address of the region is also the starting address of a page and the ending address also defines the end of a page.  A region has specific attributes controlling such things as inheritance (portions of the region may be mapped from “parent” regions), write-protection, and whether it is “wired” (that is, it cannot be paged out). 

Shared ranges of an address space may be set up via inheritance.  When new tasks are created, they are cloned from a parent. This cloning pertains to the underlying memory address space as well.  It may be inherited as a copy, or as shared, or not at all (none), based on attributes associated with the mappings.  If a page is marked shared, child tasks share this page for reading and writing. If a page is marked copy, child tasks get a copy of this page (using copy-on-write which will be discussed later).  If a page is marked none, the child’s page is left unallocated.

Each task has its own memory map. In Mac OS X, this memory map takes the form of an ordered doubly linked list.  Each of these objects contains a list of pages and references to VM objects (Figure 1-3).   Logically, a VM object is a contiguous repository for data, indexed by byte, upon which various operations (e.g., read and write) can be performed.  It resides in secondary storage that is mapped into the address space of a process.  All data in an address space is ultimately provided through VM objects.  Mach will ask the owner of a VM object (a pager) for the contents of a page when establishing it in physical memory, and will return the possibly-modified data to the pager before reclaiming the page.  The kernel uses the VM object to track and manage the resident and nonresident pages of that region.  A region can map either to an area of memory in the backing store or to a specific file-mapped file in the file system.  


[image: image2]
Figure 1-3 An address map and memory objects

The device to move data between hard disc and memory is a pager.  The pager responds to page faults and manages their replacement.  Mac OS X includes two built-in pagers: the default pager and the vnode pager.  They are used by VM system to actually get data into the VM objects.  The VM object maps regions in the backing store through the default pager and maps file-mapped files through the vnode pager.  The default pager is what most people think of when they think of a virtual memory system.  It is responsible for moving normal data into and out of the backing store.  In addition, there is a facility known as the dynamic pager that sits on top of the default pager and handles the creation and deletion of backing store files.  These pager files are filled with data in clusters (groups of pages).  The vnode pager implements file mapping.  The vnode pager maps files into memory objects.  This paging mechanism lets you read and write portions of the file as if they were located in memory. 
Mach routine provides relatively straightforward API for allocating and releasing memory. Applications usually allocate memory using the malloc routine. This routine finds free space on an existing page or allocates new pages using vm_allocate to create space for the new memory block.  Through the vm_allocate routine, the kernel performs a series of initialization steps:

1. It maps a range of memory in the virtual address space of this process by creating a map entry; the map entry is a simple structure that defines the starting and ending addresses of the region.

2. The range of memory is backed by the default pager. 

3. The kernel creates and initializes a VM object, associating it with the map entry.

At this point there are no pages resident in physical memory and no pages in the backing store. Everything is mapped virtually within the system. When a program accesses the region, by reading or writing to a specific address in it, a fault occurs because that address has not been mapped to physical memory. The kernel also recognizes that the VM object has no backing store for the page on which this address occurs. The kernel then performs the following steps for each page fault:

1. It acquires a page from the free list 

2. It inserts a reference to this page in the VM object’s list of resident pages.

3. It maps the virtual page to the physical page by filling in a data structure called the pmap. The pmap is part of Mach VM that provides an abstract way to set and fetch virtual to physical mappings from hardware. The pmap system is the machine-dependent layer of the VM system.
Address ranges of virtual memory space are populated through direct allocation using vm_allocate as discussed previously.  The underlying VM object is anonymous and backed by the default pager.  A VM object may point to a pager or to another VM object.  The kernel uses this self referencing to implement a form of page-level sharing known as copy-on-write.  It delays copy to optimize the performance of inherited copies on task creation. This works by allowing the parent and child processes to initially share the same pages.  These shared pages are marked as copy-on-write pages, meaning that if either process writes to a shared page, a copy of the shared page is created.  Using the copy-on-write technique is efficient especially to copy large quantities of data because only the pages that are modified by either process are copied; all non-modified pages may be shared by the parent and child processes.

Each VM object contains several fields, as shown in Figure 1-4.

	Field
	Description

	Resident pages
	A list of the pages of this region that are currently resident in physical memory.

	Size
	The size of the region, in bytes.

	Pager
	The pager responsible for tracking and handling the pages of this region in backing store.

	Shadow
	Used for copy-on-write optimizations.

	Copy
	Used for copy-on-write optimizations.

	Attributes
	Flags indicating the state of various implementation details.


Figure 1-4 Fields of the VM object
Mac OS X adopts a second-chance first in, first out (FIFO) algorithm which approximates the least-recently used (LRU) algorithm.  LRU replaces the page that has not been used for the longest period of time when physical memory is low.  However, instead of immediately expelling inactive pages from the main memory, the algorithm send the pages to the inactive queue.  The kernel maintains and queries three system-wide FIFO lists of physical memory pages:

· The active list contains pages that are currently mapped into memory and have been recently accessed. 

· The inactive list contains pages that are currently resident in physical memory but have not been accessed recently. These pages contain valid data but may be released from memory at any time. 

· The free list contains pages of physical memory that are not associated with any address space of the page table. These pages are available for immediate use by any process that needs them. 

Page replacement is performed by a special kernel thread called the pageout daemon.  The kernel continuously compares the number of physical pages in the free list against a threshold value (determined by the size of physical memory) to balance the queues.  Page replacement occurs by removing pages from the inactive list, placing them on the free list when the number of pages in the free list dips below this threshold.  The pageout daemon always maintains a small number of pages on the inactive list by moving pages from the active list to the inactive list (then removing mappings to those pages).  This algorithm results in a FIFO-like page replacement, except that pages on the inactive list are reactivated if they are faulted on. The inactive list serves as a second chance for pages about to be replaced.  Once the free list size exceeds the target threshold, the pager rests.
There is a trade-off in selecting the respective sizes of these lists.  Since FIFO is a poor page replacement policy, many of the pages arriving at the end of the free list after being expelled from the inactive list will be pages that are currently used by the process and should remain in main memory.  The kernel therefore must allocate enough pages to the free list to give to these pages fair chance to be reclaimed before leaving the main memory.  Hence a large free list will result in less page fault.  Although FIFO is not a good predictor of the best page to replace, the second chance afforded by the inactive list allows those pages that are actively being used to remain in memory, even though they have circulated through the FIFO queue.
A memory access fault initiates the page-in process.  Memory access faults occur when code tries to access data at a virtual address that is not mapped to physical memory.  There are two kinds of faults:

· A soft fault occurs when the page of the referenced address is resident in physical memory but is currently not mapped into the address space of this process.

· A hard fault occurs when the page of the referenced address is not in physical memory but is swapped out to the backing store (or is available from a mapped file).  This is what is typically known as a page fault. 

When any type of fault occurs, the kernel locates the map entry and VM object for the accessed region.  The kernel then goes through the VM object’s list of resident pages.  If the desired page is in the list of resident pages, the kernel generates a soft fault.  If the page is not in the list of resident pages, it generates a hard fault.

For soft faults, the kernel maps the physical memory containing the pages to the virtual address space of the process.  The kernel then adds the page to the active list.  If the fault involved a write operation, the page is also marked as modified so that it will be written to the backing store if it needs to be freed later.

For hard faults, the VM object’s pager finds the page in the backing store or from the file-mapped file, depending on the type of pager.  After making the appropriate adjustments to the map information, the pager moves the page into physical memory and places the page on the active list.  As with a soft fault, if the fault involved a write operation, the page is marked as modified. 

Technical and Commercial Success of Mac OS X

The classic Mac OS is characterized by its total lack of a command line; it is a 100% graphical operating system.  Heralded for its ease of use, it is also criticized for its almost total lack of memory management and cooperative multitasking.  Mac OS X remedied this situation, bringing UNIX-style memory management and preemptive multitasking. Improved memory management allows more programs to run at once and virtually eliminates the possibility of one program crashing another.  Mac OS X also offers flexibility by encompassing multiple application environments such as Carbon, Cocoa, and Java.  In the multiple application environments, we can seamlessly interact among different components of the operating system, such as exporting and accessing the services of other applications freely.  
One downside of the Mac OS X is the memory usage.  The biggest change from Mac OS 9 to Mac OS X is that the system and its applications, especially Cocoa and Carbon, use up a lot more memory.  Mac OS X tends to use up all available memory, even if there is a lot of it available.  This is because Mac OS X caches as much data as it can in memory so that it can potentially reuse that data without having to page it in.  Mac OS X's performance drops when all available memory is used because it has to start paging out, which decreases the performance (thrashing).  This problem is much more prevalent in Mac OS X because applications are not limited to a specific amount of memory; they just take as much as they need, so free memory dwindles fast.

Despite the expected improvement, the final marriage of stability, reliability and security of UNIX, with the ease of use of the Macintosh GUI, is targeted to professionals and consumers alike and highlights the commercial success of Mac OS X. 

Conclusion

When Apple first introduced its GUI operating system in 1984, it was such a big innovation compared to the other command-line based operating system.  The latest operating system, Mac OS X, is another huge leap.  Mac OS X came with intuitive GUI, called Aqua, with animated buttons and icons, and transparent windows and menus.  The biggest change was that Mac OS X now runs on BSD UNIX.  Mac OS X benefits from UNIX features such as preemptive multitasking, symmetric multiprocessing, protected memory, and virtual memory.  The joining of user-friendly interface and solid UNIX based technologies highlights the major technical success of Mac OS X.   Moreover, the technical success resulted in expanding the targets to not only home users or designers but also IT professionals.  

BIBLIOGRAPHIC CITATIONS

Apple (2000) “Memory Management in Mac OS X” URL:

http://developer.apple.com/documentation/Performance/Conceptual/ManagingMemory/Concepts/AboutMemory.html
Apple (2003) “System Overview” URL:

http://developer.apple.com/documentation/MacOSX/Conceptual/SystemOverview/Index/index.html
Apple (2003) “Kernel Programming” URL:

http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/KernelProgramming.pdf
Wikipedia (2003) “Mac OS memory management” URL:

http://en2.wikipedia.org/wiki/Mac_OS_memory_management
HALLMARK, RICHARD (2003) “Preemptive Multitasking”  
 http://www.macdesignonline.com/issues/marapr03/StateOfTheMac.html
Sellers, Dennis (2001) “Mac OS X Primer” URL:

http://maccentral.macworld.com/news/2001/03/24/primer/
King, L (2001) “The Overview of the Mac OS X” URL:

http://www.cs.nmsu.edu/~lking/index.html
Bassett, Karen  and Fussenegger, Eric (2001) “Mac OS X: Apple’s Operating System of the Future” URL:
http://www.lrdc.pitt.edu/compserv/News/Articles/Mac%20OS%20X-Apple%E2%80%99s%20Operating%20System%20of%20the%20Future.htm
Shields, Paul (2002) “Inside SMP (Symmetric multiprocessing) URL:

http://www.thebusinessmac.com/features/smp.shtml
Drakos, Nikos (2001) “Advanced Synchronization in Mac OS X: Extending Unix to SMP and Real-Time” URL:
http://www.usenix.org/publications/library/proceedings/bsdcon02/full_papers/gerbarg/gerbarg_html/
[image: image3.png]Tuk

Tiuead  Thead

Masssgs
Pot |

Addres Mips

/

Moy Object Memory Object “ifaamory Objact




