
CS-450-2: Operating Systems

Fall 2002

Jeremy Bruker

Jeremy Carbaugh

Jeff Hensley

Drew Stockdreher
Table of Contents

Introduction………………………………………………………………..
1

Scope of Operating System………………………………………………..
1

Goal of Design……………………………………………………………..
1

History……………………………………………………………………...
2

Hardware……………………………………………………………………
2

Scheduling……………………………………………………………….…
2

Code Analyzer and Performance Monitor…………………………………
4

Synchronization……………………………………………………………
4

Memory Management……………………………………………………..
4


Problems to overcome …………………………………………….
4


Schemes……………………………………………………………
5


Heap Manager……………………………………………………..
6


Dynamic Linking and Loading…………………………………….
6

Host Program………………………………………………………………
6

Target Program…………………………………………………………….
6

XOberon in Use……………………………………………………………
7

Future Improvements and Additions………………………………………
8

Introduction


The purpose of this paper is to define the areas where a hard real-time operating system is needed, and to discuss how the XOberon operating system addresses the requirements for a hard-real time operating system.  The goals behind the design of the operating system and a brief history of XOberon are discussed.  The hardware platforms that XOberon is designed for, as well as a discussion of the distinguishing components of the XOberon RTOS are described. These components are the scheduler, synchronization tools, code analyzer, the memory manager, and the host and target programs. Some applications where XOberon is in use, as well as future plans for the operating system are also touched upon. 

Scope of Operating System


XOberon is a hard real-time operating system.  By real-time it means that it should be able to produce correct results within a predefined time deadline. Therefore, the computational correctness depends on the logical correctness of the results as well as the timing correctness.  A hard real time system is a particular subclass where the incorrect completion or exceeding the deadline for the task may result in catastrophic failure of the system.(Brega, 1998)  In the area of mechatronics (computer controlled machines) such failures could result in costly equipment damage, or injury to operators or others.  

The safety of a complex embedded machine, such as a large milling machine, do not only rely on the mechanical structure of the machine, or the electronic circuitry, but also on the software that is responsible for efficient run time and predictable error handling. (Brega, 1998) The fundamental concern with a hard real-time system is not the speed of the computations, but rather that of being predictable.  XOberon was designed in order to provide an operating system that can guarantee the safe, correct and timely execution of tasks. 

Goal of Design


The goal behind the design and creation of XOberon is to provide a framework for non-computer-scientists, looking for a rapid application development (RAD) tool for programming embedded applications.  The end result is an operating system that provides a reliable, real-time capable run-time environment, which guarantees safety aspects.  The design was created also for predictability and run-time safety.(Brega, 1998)  As a result of where a system like Xoberon is used, such as with large high-speed machines, the speed at which the OS is able to complete tasks also has importance. XOberon is well suited for the development of programs for the manipulation of complex mechatronic products. 

History 


The XOberon real-time operating system (RTOS) was designed and developed at the Institute of Robotics (IFR), Swiss Federal Institute of Technology, Zürich(ETHZ).  It was developed specifically for use in high-end mechatronic applications. These products are usually in need of a hard RTOS that can guarantee the execution of procedures within a given time in order to have satisfactory performance, and also to avoid catastrophic results. XOberon is based on the Oberon operating system, and written in the Oberon-2 Object Oriented programming language.  The core of XOberon is composed of the real-time scheduler, the memory manager, the heap manager, the dynamic linking-loader, the communication support and the drivers toolbox.  On top of these core components, many packages are available to provide extra services and functionalities.  Some of these available packages are Internet servers, board support packages, and run-time performance monitor.  

Hardware


XOberon runs natively on the Motorola VME boards based on the MC680x0 and the PowerPC architectures.  The newest version is made to run on only the PowerPC in order to take full advantage of the better computing power.  The complete XOberon OS only needs 1 MB of ROM and 1.5 MB of RAM on the target machine.  The setup of a complete system would consist of a host machine that runs the development environment for XOberon, the target machine (running PowerPC and XOberon), and a connection between the two machines via an Ethernet link. 

Scheduling


The most important part of a real-time operating system is the process scheduler.  In order for real-time systems to be effective, tasks must successfully complete within an allotted time frame.  XOberon accomplishes this by implementing a unique deadline-driven scheduler for real-time tasks.  When a task is to be added to the system, a run method, exception handler method, duration, deadline and period must be passed to the scheduler.  The deadline is the latest time that the results from a task are usable.  The period is the amount of time between each execution of a repetitive task.


When a task is allocated to the system, the scheduler checks to see if it can execute the task before the requested deadline expires.  This determination is made by comparing the duration, or worst-case execution time, of the task to the amount of system resources that are available.  The test will fail if the system would be unable to complete task by the deadline.  If the task passes the admission test it is added to the real-time ready queue, but if it fails, the process will trapped to the operating system.  A trap to the operating system causes the exception handler of the failed task to be called.


Once a real-time task is admitted to the system, it is placed in the scheduling pool.  The first task to run is the task with the shortest (closest) deadline.  This task will run until it finishes execution, the duration is exceeded, or another task has a shorter deadline.  If the duration is exceeded, the task is trapped to the operating system and removed from the system as a default exception handler is called.  The system can also detect tasks caught in loops that exceed a maximum number of iterations.  A task will also be stopped if it is pre-empted by another process.  Pre-emption will only occur when another task on the system has a shorter deadline than the current task.  A process with a shorter deadline can occur from a new task entering the system, user intervention, or a repetitive task that has reached the end of period.  The following diagram shows a basic representation of the XOberon real-time process scheduler:

[image: image1.jpg]
Figure 1.


Since most non-real-time tasks do not have deadlines, they are not scheduled using the deadline-driven scheduler.
XOberon is capable of handling non-real-time threads, but they are only executed once there are no real-time tasks waiting to be executed.  The non-real-time tasks are referred to as threads.


Each thread in the system is given a priority number that is used to determine when it will run.  The system was designed with a hot-swappable thread scheduler that leaves the scheduling algorithm that is used up to the user.  Examples of the scheduling algorithms that can be selected in XOberon include round robin, priority-driver, and priority-driven with aging.  The user may select any algorithm as long as a module exists that implements it.


A major factor in the selection of a scheduler for a real-time operating system is the overhead that the algorithm will place on the system.  The XOberon scheduler has low overhead since it was designed with the system architecture in mind.  On a reference system consisting of an MVME1600 board with a 100MHz PowerPC604, the scheduling overhead is less than one percent.  Even in the worst case, the overhead will scale linearly with a one percent increment.  Similarly, the overhead will decrease linearly on better PowerPC implementations.

Code-Analyzer and Performance Monitor


XOberon is able to make fairly accurate worst-case execution time (WCET) predictions due to the close integration between the run-time environment and the compiler.  When the code is compiled, the compiler uses code analysis and information about the system architecture to predict the longest time that execution will take.  One factor that is included in the prediction is loop termination analysis.  An accurate WCET time can be calculated since the compiler is able to fairly accurately predict the number of iterations through a loop.  However, since the prediction algorithm must predict the maximum number of iterations for a loop, the WCET is usually over-estimated rather than under-estimated.  Many other factors, such as processor branch prediction, dynamic object creation, and process pre-emption, are taken in to account during code analysis.

During task execution, the operating system makes use of the PowerPC chip’s Performance Monitor.  The monitor, which is part of the processor architecture, samples processor data such as the number of cache hits, incorrect branch predictions, and pipeline stalls.  Using this information, the system is able to re-evaluate the WCET during process execution.


The following table shows the measured and predicted WCET for an application known as Robojet.  Even though not all applications will have such a successful WCET prediction, measured values are usually within ten percent of the predictions.

[image: image2.png]
Synchronization


XOberon environment includes a Synchronizer class that provides inter-process communication and mutual exclusion.  Through the mutual exclusion, tasks are able to put a lock on critical sections of code so only one process can access shared data or resources.  The system keeps careful track of all the locks in the system, making sure to release the locks of processes that have been trapped to the operating system.  The mutual exclusion monitor is also reentrant, meaning the system will allow a process to reacquire a lock.  In a non-reentrant system a process could deadlock if it tried to regain a lock that it had released. 

Memory Management:  Problems to overcome

XOberon approaches memory management by first addressing some of the problems which must be overcame by a real-time OS.  The first problem to overcome is that of separate address spacing. By using available hardware support, an operating system can let programs run in separate address spaces, communicating with each other via inter-process communication signals. This way, if an ill-behaved application has a memory-related fault, only the offending application will be shutdown, without interfering with the operating system or with parallel running threads. Unfortunately, allowing multiple address spaces presents some severe disadvantages, which are not tolerable on a real-time system. The first disadvantage is the large amount of overhead involved in context switching. Since real-time operating systems also need very tight scheduling time-slices, a second disadvantage would be the thrashing of the involved hardware resources, like data and instruction caches, translation-look-aside buffers and branch prediction tables.  The second of the memory related errors result from illegal pointer operations, such as non-initialized references to data structures, faulty pointer arithmetic, etc. Since the Oberon-2 programming language, like the Java programming language, is strong-typed and does not allow an explicit handling of pointer references, many problems, typical for the C programming language are caught at compile-time, and thus completely avoided. Nevertheless, there are some memory-related errors, which can be solved more efficiently during run-time, by using the paged memory management of modern processor architectures, like the PowerPC.

Memory Management:  Schemes

XOberon makes heavy and pervasive use of paging. The available physical memory is mapped, page by page, into the four-gigabyte (232 bytes) virtual address space. Several, fixed size chunks are assigned for the different uses. Building on this scheme, the Memory Manager reserves virtual blocks to the module loader, to the system-heap, to the stacks-pool, to the DMA range, and for the memory mapped input/output. Each block is handled differently, according to its characteristics and is tuned for optimal cache-performance.

Using this memory management scheme, XOberon can resolve nil-checks (non-initialized pointer references) at run-time and not with code explicitly emitted by the compiler.  Stack-overflows can be safely trapped without compiler intervention or run-time overhead. Yet, stacks are allowed to dynamically grow (for non–real-time tasks) if there is such a need, hence allowing a minimal initial stack-size, with a consequently better memory utilization. Also, DMA ranges can be marked as non-cacheable, simplifying the handling of direct memory accesses for drivers writers.  Finally, references to unloaded modules (dangling code or data pointers) can be easily trapped

 without having to risk an access on unknown memory blocks.

This memory scheme delivers a high degree of reliability and overall safety to the system, and the already minimal and real-time compatible run-time overhead is more than compensated by the speed increase gained by the optimal tuning of the cache behavior on the different memory blocks.

Memory Management:  Heap management

Many systems and programming languages allow the programmer to allocate and reclaim memory for data dynamically allocated in the heap.  Unfortunately, the manual reclamation of heap blocks is often unsatisfactory, because the lifetime of many data structures cannot be determined before execution. Programmer-controlled storage management inhibits modular programming. In addition, a lot of run-time errors usually hide inside missing or ill-placed disposes, the former resulting in memory leaks, and the latter in dangling pointers. In a hard real-time system such as XOberon, preventing memory leaks and the possibility of running low on available memory is absolutely critical to the overall performance and ability of the OS. A safer solution is to let a system-wide daemon, namely a Garbage Collector, take care of the automatic reclamation of data, which is no longer referenced by running programs.  

XOberon’s garbage collection scheme addresses the typical problems posed by the very high requirements of a real-time operating system. First of all, given the real-time pre-emptive context-switch taking place in the scheduler, the garbage collector must ensure that high priority tasks can still be completed in a guaranteed amount of time, that is, without violating the specified time-constraints. This is done with an interruptible Mark-and-Sweep algorithm, by means of the collaboration between the garbage collector and the running tasks.  XOberon’s garbage collector runs as a non–real-time task with variable priority: the less memory is available, the more prioritized will be the collector. Considering that the real-time tasks are inhibited by the compiler from allocating dynamic data, it is guaranteed that the garbage collector will always get adequate run-time for trying to reclaim unused data.

Memory Management:  Dynamic linking and loading

Oberon programs are written as separate compilation unities called modules. Modules have an interface that is checked against violations during compile-time and linking-time.  Compilation modules allow for a far shorter edit-compile-run cycles. The code emitted by the very fast, two-pass Oberon-2 compiler is loaded, then checked for version-consistency and eventually dynamically linked.

A linked module can be safely removed from the running system, if no other module is importing it. This is accomplished by a simple reference counting strategy. In the always possible case, where an implicit reference is held to some parts of the code or the data structures of a removed module, the memory manager blocks those dangling addresses, by trapping the ill-behaving task and firing a standard exception handler.

Host Program

       The host program for XOberon allows a user to write the OS implementation for a target computer on most major commercial OSs such as Windows, Sun, and Unix.  This allows for easy implementation of the target, since the host program can be used on a variety of different platforms.  Another advantage of the Host program is that it is free to the public and distributed with three different tutorials.  Allowing an adept programmer to become familiar with the XOberon host application in a short time.   Also the compact size of the host program is notable on all platforms.  The windows version is about 7 MB and the Unix version is about 6 MB.(Brega, 1998)  The ability to modify a module, compile and replace the module on the target system in a very short time is one of the strongest areas in which XOberon allows for the easy implementation of hard real time programming solutions. 

Target Program

         The Target program is compiled by the Host program and then sent to the Target system to run.  Target programs are limited to run on the specific type of machine that they were compiled for. These machines are limited to the Motorola 680x0 version family of processors and the PowerPC architectures in order to take advantage of the improved computing power provided by these systems.  The code that is generated is made of special Assembly code and Byte code that increases the overall performance of the system and cuts down on the overhead attributed to system functions, such as scheduling, memory management, and Switching.  The target program is relatively small at less than 1 MB in size including all the packages. (Brega, 1998) 

XOberon in Use


One example of XOberon in everyday use is the Hexaglide.  The Hexaglide is a milling machine that is used to cut out precise metal shapes.  It is composed of 6 constant length bars attached to linear direct drive motors.  The Hexaglide needed an operating system that allowed for the easy implementation of tasks such as motion-cintrol path-planning and security functions. (Honegger, 2002) It uses XOberon on a PowerPC604 running at 100Mhz.   The system runs 19 different tasks all at the same time while 89.9 percent of them are Hard Real Time.  On a 100Mhz machine XOberon is able to do this and keep the non-real-time processes running, while only using 5.5 percent of the system resources for scheduling overhead.  


Another example of XOberon being used as a Hard Real Time OS for a Real time activity is that of the RoboJet Cement Sprayer.  The purpose of this robotic cement dispenser is to go down into tunnels and spray cement onto the walls and the ceiling.  This is not an easy job for a human to do and may be dangerous.  This robotic sprayer takes a hard job and makes it easy.  However to do so it has to operate Real time in order to be able to do a good job as the operator gives it commands through a keypad and joystick.   To do this the developers of the RoboJet based the design of the control system on XOberon.  This insures that the commands to move one of the eight hydraulic actuators will occur when singled from the controls.  The controls are made of a joystick with 6 degrees of freedom and a keypad to control the spray and movement of the RoboJet without the hard real-time aspects of XOberon this type of robot would not be possible.

Future Improvements and Additions


Some new features are under consideration for future releases of XOberon. Among these are the addition of a real-time compatible incremental garbage collector, off-line execution time profiling, Java Support, and ActiveX visualization tools.  The addition of Java support will greatly improve the usability of XOberon in applications that may exist outside of the mechatronic and robotic spaces. 

Bibliography

Brega, Roberto. “A Real-Time Operating System Designed for Predictability and Run-Time Safety.” Proc. of The Fourth International Conference on Motion and Vibration Control (MOVIC). Zürich. 1998.
http://xo2.org/Docs/movic98.pdf

Brega, Roberto. “Real-Time Kernel for the PowerPC Processor Architecture.” 1996.
Brega, R., Honegger, M. (1998). “Performance”


http://www.ifr.mavt.ethz.ch/research/xoberon/performance.html

Brega, R., Honegger, M. (1998). “Introduction”


http://www.ifr.mavt.ethz.ch/research/xoberon/introduction.html

Corti, M., Brega, R., Gross, T. “Approximation of Worst-Case Execution Time for Preemptive Multitasking Systems.” Proc. of the ACM SIGPLAN LCTES'2000, Workshop on Languages, Compilers, and Tools for Embedded Systems. Vancouver B. C. 2002.
http://link.springer.de/link/service/series/0558/papers/1985/19850178.pdf

Honegger, M., Brega, R., Schweitzer, G. “Application of a Nonlinear Adaptive Controller to a 6 dof Parallel Manipulator.” Proc. of the Proceedings of the 2000 IEEE International Conference on Robotics & Automation. San Francisco, CA. 2002
http://xo2.org/Docs/icra2000.pdf

Honegger (1998) “Human Oriented Control of a Concrete Spraying Robot for Tunneling 

Work”


http://www.ifr.mavt.ethz.ch/research/robojet/index.html
Group Task Breakdown

XOberon

Jeff Hensley:  
Researched, prepared slides, and wrote sections of the paper pertaining to memory management

Jeremy Carbaugh:  
Researched, prepared slides and wrote section of the paper pertaining to scheduling and worst case execution time. 

Jeremy Bruker: 
created diagrams, prepared slides pertaining to the host program and sample applications using XOberon. 

Drew Stockdreher
Identified initial list of possible research topics


Researched, prepared slides and wrote sections of paper pertaining to the purpose, goals and history of the XOberon RTOS.


Edited and compiled final deliverables.


Prepared group work breakdown document


Prepared table of Contents







PAGE  

8

