Solaris

CS 450

Dr. Abzug

Fall 2003

Section 2

Alex Blood

Mike Henry

James Sheasley

David Waterman

Table of Contents

Title page

Pg. 1

Table of Contents

Pg. 2

Introduction

Pg. 3

Brief History

Pg. 3

Multiprocessor Support

Pg. 3

Dealing With Deadlock

Pg. 5

CPU Scheduling

Pg. 5

Virtual Memory

Pg. 7

Conclusion

Pg. 8

Bibliography

Pg. 9

Work Summary

Pg. 10

Introduction

Solaris is a variation of the original and subsequent Unix kernels developed since the creation of Unix by AT&T in 1969. Solaris is generally used by ISPs to run web-servers and database servers. Since Sun began developing Solaris, its target market has been enterprise solutions. (It is generally understood that Unix systems, like those running Solaris, make the Internet possible.) This project will focus on discovering how Solaris runs the way it does and how it compares to its peers. We will examine its Multiprocessor Support capabilities, how it deals with Deadlocks, how it performs it’s CPU scheduling and its Memory Management techniques. In comparisons with Microsoft Windows NT based machines, Solaris was found to be far superior in stability and efficiency tests.

Brief History

In 1969, engineers from Bell Labs, a division of AT&T, created a new operating system. This new system, (now known as UNIX,) had many great features, but its most notable new feature was its ability to allow multiple users simultaneous access to the computer. Originally, due to a Department of Justice injunction, AT&T was not allowed to sell software. AT&T therefore issued several licenses without tech support to interested parties. One of them was the University of California, Berkley, Computer Science Department , which started using Unix in 1974. In 1977, a graduate of U.C. Berkley created the first Berkley Software Distribution version of Unix. Among other positive outcomes, this caught the attention of the US Department of Defense, which was looking for a way to decentralize its computer network. This helped development of Unix as well as creation of decentralized networks and eventually the World Wide Web. In 1987 Sun Microsystems and AT&T created an alliance to develop the Unix System V Release 4 version of Unix. Since then Sun has continued improving and supporting it’s OS suite Solaris by adding more features including 64- bit functionality. Sun is currently releasing Solaris 9 OE for its SPARC and UltraSPARC systems as well as a new Solaris 9 OE x86 Early Access version for workstation uses. Solaris 9 OE now delivers the security, manageability and performance that IT professionals need to increase service levels and decrease costs and risks.(SUN http://wwws.sun.com/software/solaris/index.html)

Multiprocessor Support

The Solaris kernel is fully pre-emptible, has soft real-time scheduling, symmetrically supports multiprocessors, and supports user-level multithreading.

When the multiprocessor support was first added to the Solaris kernel, developers wanted to do more than just add locks to the kernel. They wanted the kernel to be capable of a high degree of concurrency, and also to support more than one thread of control within a user process. These threads needed to be capable of executing system calls and handling page faults independently. To make the kernel support multiprocessor operation, the threads of control needed to be capable of running concurrently on different processors. The developers also wanted the kernel to be capable of soft real-time operation, which required control over scheduling, and preemption to be possible at almost any point in execution.

As we discussed in class, a kernel thread uses comparatively few resources, and switching between kernel threads is relatively inexpensive because it does not require a change of virtual memory address space. Kernel threads are also fully pre- emptible, and may be scheduled by the real-time priority class. Solaris uses kernel threads to allow asynchronous kernel activity, such as asynchronous disk writes. This removes various complications from the idle loop and replaces them with independently scheduled threads. This increases concurrency because separate actions can be handled by separate CPUs, and also gives asynchronous activity a priority so that it can be scheduled appropriately. Kernel threads also handle interrupts. If an interrupt thread encounters a lock, it blocks and allows the critical section to clear to prevent deadlock. Because creating a new thread every time an interrupt occurs is time consuming, the kernel prepares partially initialized interrupt threads, and when an interrupt occurs the minimum amount of work is done to move it onto the stack of an interrupt thread.

[image: image1.emf]
Figure 1. Diagram of Lightweight Processes

A major feature of the Solaris kernel’s multiprocessor environment is the support of lightweight processes (LWPs). LWPs are multiple kernel-supported threads of control in any user process, as shown in figure 1. They share address space with the process, and the processes resources. The kernel supports execution of user LWPs by associating a kernel thread with each LWP. A user-level library uses LWPs to implement user-level threads. This allows a user process to have thousands of threads without overwhelming the kernel.

Dealing With Deadlocks

As previously discussed, the Solaris kernel is designed to prevent deadlocks caused by interrupt threads. This is done by blocking the interrupt thread, if a locked synchronization variable is encountered, and waiting for the critical section to clear. The kernel locking strategy used is data-based locking. In this method, each piece of shared data is protected by a synchronization object.

The kernel also implements deadlock prevention using mutual exclusion locks (mutexes) to prevent more than one thread from proceeding when a lock is encountered. This prevents a race condition when accessing shared data. If a mutex cannot set a lock because it is already set, the default blocking policy is to spin while the owner of the lock runs on a processor. The owner’s status is polled in a spin wait loop, and if the owner ceases to run the blocked process stops spinning and sleeps. This gives fast response and low overhead.

Deadlock detection is also implemented. Deadlocks caused by hierarchy violations are detected at runtime by the priority inheritance mechanism used. Because this mechanism does not keep a complete list of threads holding a read lock, however, it is not capable of detecting all deadlocks; some deadlocks with condition variables are not detected.

The Solaris kernel uses numerous approaches to dealing with deadlocks: prevention, detection and resolution, and do nothing.
CPU SCHEDULING

Running, Sleeping or Ready are the states that a process can exist.

The following scheduling classes exist in Solaris:

· Timesharing: Regular user work. The CPU is rotated between threads at the same priority by time slicing. Compute-bound operations have their priority lowered and I/O-bound operations have their priorities raised.

· Interactive: Interactive class. This is the same as the Time Sharing class with the addition of a priority increase that is given to the task in the active window.

· System: Kernel priorities. This class is used for system threads. The CPU is not shared amongst these threads by time slicing. These system threads run until finished or pre-empted. Fixed priority levels are utilized in this class of processes.

· Real Time: Processes that require immediate system access, such as critical hardware systems. Interrupt handling is the only classification that gets higher priority that Real Time. Threads will share the CPU through time slicing if they have the same priority. Real time threads have a priority that is constant for the duration of their existence.

When Real Time process are not present, Timesharing and Interactive processes will utilize priorities between 0 and 59, System threads will have priorities of 60-99, and interrupt threads will have priorities between 100 and 109.

In the presence of Real Time processes, Real Time will utilize priorities between 100 and 159, and interrupt threads will have priorities between 160 and 169.

Time Slicing

Time Sharing and Interactive scheduling classes increase the priority of I/O-bound processes at the while lowering the priority of compute-bound processes.

The following values are reported in the dispatch table:

· ts_quantum: the default length of time assigned to a process with the specified priority.

· ts_tqexp: the new priority that is assigned to a process that uses its entire time quantum.

· ts_slpret: the new priority assigned to a process that blocks before using its entire time quantum.

· ts_maxwait: If a thread does not receive CPU time during a time interval of ts_maxwait, its priority is raised to ts_lwait.

· ts_lwait:

An object in the active window is considered Interactive. Interactive objects add 10 to the regular Time Sharing priority of the process in the active window. Real Time threads will execute it is blocked while waiting for a resource or until its time slice is up.

Priority Inheritance

Each thread uses a global priority and an inherited priority. The global priority is the general use priority. The inherited priority is only utilized if the thread is using a resource that is needed by a thread of higher priority. Normally the inherited priority is set to zero.

When a thread is waiting on a resource it will attempt to pass on its priority to all other threads involved with that resource. All threads of a lower priority will inherit the priority of the waiting thread.

Thundering Herd

All threads that are waiting on a resource are woken when that resource is freed. Wasted overhead from context switches can occur is lower priority threads obtain access to the resource before higher priority threads that were also waiting. Once all the threads are woken it is a mad dash to gain access to the resource. This problem is often referred to as the “Thundering Herd”.

Priority inheritance attempts to limit this problem.
Virtual Memory

At boot time, Solaris divides all memory into pages. Typically, this is 4 kilobytes, and can range up to 4 megabytes. Solaris uses a global Second Chance two-handed LRU algorithm for its virtual memory system. In it, all pages of the system compete with each other for the memory space. This is done by a kernel thread called the pageout scanner that continuously clears the reference bits of pages, and then periodically checks to see if they have been used between the scans. Any page that has a reference bit of zero when a scan is done is moved to the free list, so that a new process can overwrite it if it needs the memory. It does this by two pointers in memory, one pointing to the next page to have its reference bit cleared, the other points to the next page to be checked to see if it should be moved to the free list. The distance between the two is called the handspread. They are moved in unison.

Moving a page to the free list puts it on an I/O queue waiting to be written to, swap, and mark for re-use. However, the page is still in memory. If a process wants a stolen page, but it has not been reused, it can be reclaimed immediately. This is called a minor page fault. If a process must ask the pager to bring a page back in, this takes longer, as the disk must be accessed. Solaris considers it a major page fault.

Scanning is performed periodically on the system and is dependant on the amount of free memory. The scanner activates when the system falls below the lotsfree parameter, which defaults to 1/64 of main memory. The pageout scanner will then scan between a fixed boundary of slowscan and fastscan. If necessary it can also be configured to keep the scanner from using excess CPU time.

Once memory falls below desfree, which is defaulted to half of lotsfree, it will trigger a timer that will try to get an average of memory within 30 seconds above desfree. If it is unable to do so, it triggers a soft swapping state. In soft swapping, it will only swap processes that have been idle for a certain length of time. The default process idle is 20 seconds.

If it thinks the OS is about to start thrashing, when the CPU spends more time replacing pages than doing useful work (when the average over 30 seconds falls below minfree [half of desfree] and current free memory is below desfree), it goes into a hard swap state. Even jobs running are eligible to be swapped out, and it favors taking out jobs that have been running for a long time or processes that have allocated a relatively large amount of memory. Processes not eligible for being swapped out include those in the real-time class, executed by a signal, exiting, as a zombie, a system thread, or one that is blocking a higher priority thread.

Conclusion

During the course of this project, we learned about several new techniques used in modern operating systems. We found out several reasons why Unix type machines and especially the Solaris version are seen as reliable and efficient. We believe that the Unix operating systems have many more developments ahead and will be well suited for the challenging times ahead.

Bibliography
Bertoni, Jonathan L. "Understanding the Solaris VM Paging System." Sun Microsystems Laboratories. Nov 98.

Bludau, Nicole. "Solaris 2.x - Process Concept and Internal Architecture." Whisk Professional School. 6 Nov 2002. Internet. 28 Nov 2002. Available at:

http://www.fh-wedel.de/cis/archiv/seminare/ws95/wi-seminar-ws95/solaris/kap1.htm

Cockcroft, Adam. "Help! I've lost my memory!". Sun Microsystems. Internet. 28 Nov 2002. Available at: http://www.sun.com/sun-on-net/itworld/UIR951001perf.html.

Cromar, Scott. "Memory and Swapping". Princeton University. 8 May 2000. Internet. 28 Nov 2002. Available at: http://www.princeton.edu/~unix/Solaris/troubleshoot/ram.html

Cromar, Scott. "Solaris Scheduling". Princeton University. 15 May 2000. Internet. 1 Dec 2002. Available at: http://www.princeton.edu/~unix/Solaris/troubleshoot/schedule.html

Ehlis, Adam C. “The History of Unix”. Ehlis 1999. Internet. 4 Dec 2002 Available at:

http://www.ehlis.com/adam/solaris/solaris.html

Eykholt, J. R., et al. "Beyond Multiprocessing... Multithreading the SunOS Kernel." SunSoft, Inc. 4 Dec 2002. Internet. 28 Nov 2002. Available at:

http://citeseer.nj.nec.com/cachedpage/1716/1

Flatters, Chris. "Getting the Best AIPS Performance from Solaris". AIPS. May 2000. Internet. 28 Nov 2002. Available at: http://www.nrao.edu/aips/solaris-tuning.html.

Galvin, Peter Baer, Greg Gagne and Abraham Silberschatz. Operating System Concepts.6th Ed. New York: John Wiley & Sons, 2002.

Loukides, Mike and Gian-Paolo D. Musumeci. "System Performance Tuning, 2nd Edition: Chapter 4: Memory".O'Reilly & Associates, Inc. 2001. Internet. 28 Nov 2002. Available at: http://www.oreilly.com/catalog/spt2/chapter/ch04.html.

Sun MicroSystems. “Solaris[tm] 9 Operating Environment” Sun Microsystems 2002

Internet. 4 Dec 2002 Available at:

http://wwws.sun.com/software/solaris/index.html

Work Summary

Alex Blood

Introduction, History, and Conclusion. Revision and formation of the final product.

Mike Henry

Memory Management

James Sheasley

CPU Scheduling

David Waterman

Multiprocessor support and dealing with deadlocks

2

_1100497755.psd

