IBM’s Operating System 2

By

Chris Axford

Chris Evans

Elizabeth McGinnis

Erik Swensson

CS 450

Section 2

Fall 2002

Table of Contents

History of OS/2
-
-
-
-
-
-
-
-

Hardware Platforms
-
-
-
-
-
-
-
-

Microprocessor Requirements and Abilities
-
-
-
-
-

User Interface
-
-
-
-
-
-
-
-
-

Process Control Block

-
-
-
-
-
-
-

Multitasking Abilities
-
-
-
-
-
-
-

Process Communication and Synchronization
-
-
-
-

Scheduling
-
-
-
-
-
-
-
-
-

Memory Management

-
-
-
-
-
-
-

Directory Structure
-
-
-
-
-
-
-
-

File System
-
-
-
-
-
-
-
-
-

Bibliography
-
-
-
-
-
-
-
-
-

History of OS/2

In the early and mid-1980s DOS was the king of operating systems for personal computers. With the coming of newer, faster machines such as Intel's 80386 a new operating system was needed that could put to use the more powerful and faster hardware; OS/2 was IBM’s answer. OS/2 was a joint venture between IBM and Microsoft, where IBM was in charge of development of the core operating system and Microsoft was to handle the design and implementation of the graphical interface; "The lead architects of OS/2 on the Microsoft side was Gordon Letwin and on the IBM side it was Ed Iacobucci(later co-founder and CEO of Citrix)" (Necasek, 1998).

In 1987 OS/2 version 1.0 came out, some features included preemptive multitasking, inter process communication, virtual memory support and multithreading. OS/2 version 1.1 came out a year later and was basically the same system but included an easier to use graphical user interface. However, Windows version 1.0 came out a couple of years prior to OS/2 and despite not being as reliable an operating system, was generally accepted by the general public because it was easier to use. OS/2 did not generate revenue as IBM hoped, as many users decided not to switch from Windows to OS/2.

In late 1989, OS/2 version 1.2 hit the marketplace- its most improved feature was its use of the High Performance File System, which was faster than FAT. In 1990, Windows 3.0 was released and again Windows outsold OS/2. Again it seemed that most of the buying public preferred to stay with the familiar but unreliable Windows as opposed to experimenting with the “new” product OS/2. For whatever reason this would remain the fate of OS/2 in the marketplace. Some blame it on poor marketing and planning by IBM, while others blame the lack of success on Windows being an easier system to use. Regardless of the reason, OS/2 never became a dominant operating system for personal computers. (Both, 2000)

When OS/2 version 1.2 was released, Microsoft broke off its partnership with IBM and focused its efforts on their Window’s system. OS/2 v.1.3 came out a year later and was developed solely by IBM, which resulted in a smaller, more compact operating system. OS/2 version 2.0 came out in 1993 and was a 32-bit OS. Many other versions of OS/2 where undertaken by IBM and almost all of them were failures when it came to sales. The OS/2 for PowerPC was the most embarrassing failure for IBM where billions were put into a product that never fully made it to the shelves. (Both, 2000)

The most important and impressive version of OS/2 was OS/2 Warp that came out in 1994 and thoroughly out-performed Windows. Warp was not founded on the unreliable DOS like Windows 3.1 and 95. It was easier to use than previous OS/2 systems and it supported the Internet, albeit crudely, long before Microsoft had incorporated it into their systems. Although it was a better overall system then Windows, Windows 95’s upcoming release again hurt IBM and again sales for the OS/2 warp were disappointing. OS/2 warp had a few versions and improvements but IBM had all but given up its resources toward the production of more OS/2 products and very few if any still run OS/2 for practical reasons (Nacask, 1998)

Hardware Platforms

IBM designed the original version of OS/2 to make use of the improved abilities and performance on the new group of personal computers such as Intel’s 80286 and the 80386. “These processors allow for a much greater amount of physical memory, will run much faster, allow for the running of multiple tasks, and also allow for running applications in both the real mode and the protected mode” (Campbell, p.9). OS/2 additionally has the ability to support most of the common printers, hard drive, disk drives, monitors of the day. IBM designed OS/2 to be able to run on their PC’s and Intel’s, but did not allow OS/2 to be run Apple’s Mac computer for obvious competitive reasons. The later versions of OS/2, including the newest incarnation OS/2 Warp, generally kept pace with new PCs being released at breakneck speeds. As the newer versions were released IBM also expanded OS/2’s hardware compatibility so that the operating system could be run on various competitors’ machines (i.e. the various models of Dell, Compaq, Gateway, etc.). Additionally, OS/2 provided networking capabilities and therefore supported communication devices such as modems and Ethernet cards.

Microprocessor Requirements and Abilities

OS/2 version 1 also has certain microprocessor requirements. As mentioned before, it runs on the Intel 80286 microprocessor or higher. Any Intel microprocessors before this do not contain the necessary functions for the operating system, such as the ability to use pages. Other microprocessors may be used as long as they have the ability to use pages for memory. OS/2 also requires at least 2 MB of RAM to run both the OS/2 and DOS execution environments.

OS/2 provides a utility called dynamic link call/return API. This utility allows cooperative processing as a modular base for applications to extend. The base provides real-time interrupt driven hardware and multitasking.
User Interface

The original interface for OS/2 version 1 was the traditional command line structure- where users typed commands to direct the operation of the OS. The user interface for OS/2 version 1.1 was one of the first to take advantage of the previously mentioned increased processing power and provided a graphical user interface. This GUI, entitled the Presentation Manager, allowed users to interact with the operating system by using the mouse to point and click as opposed to typing commands on the command line. OS/2’s Presentation Manager provided windows which displayed one application and allowed the user to control the application through these windows. Furthermore, the Presentation Manager provided very useful and now common functions. OS/2 allowed the start-up of applications through the GUI and allowed the user to switch between running applications from a list provided by the OS. OS/2 version 1.1 still supported the use command line interface that allowed the users to run the application in the traditional way. This version also supported applications which did not make use of the API and ran solely through the command line. The Presentation Manager also allowed users to switch quickly between two or more applications from a list of running applications which include those using the Presentation Manager and those which do not (i.e. Non-Presentation Manager Applications).

Process Control Block

As discussed in detail during class lectures, a key element of a process image is the process control block (PCB). OS/2 utilizes the standard structure of the PCB and includes the traditional elements such as a pointer to the next process, the process state, the process number/ID, program counter, registers, list of open files, memory information, and accounting information. The main reason for the use of PCBs in the original version of OS/2 is to allow for the inclusion of a preemptive scheduling algorithm. The PCB stores the necessary information so a process may be removed during execution and when the process’ execution resumes the PCB is used to load the appropriate values into the various registers.

Multitasking Abilities

OS/2 can run in two different operating environments or “modes”. The first environment is real mode. In this mode multi-tasking is not possible. The processor only works on one application and one process at a time, it is synchronous. The second environment is protected mode which is more powerful and flexible. In this mode, multi-tasking, the ability to run multiple processes concurrently is enabled. An instance of an application is a session. Several sessions of one application or many different applications may be running at any given time. The session that the user is communicating with is the foreground session; all the other sessions are background sessions. However, all the sessions may continue to execute regardless of the type. A process is the entity that owns system resources. A session may have several processes running and processes may start other processes. A thread is a series of program instructions that are executed as a unit. A process owns at least one thread but may own several. The threads of a process (whether kernel or user) share the same system resources but each thread consists of the following individually:

· Thread ID: an ID assigned at creation for identification by other threads

· Stack: where registers are saved for that particular thread

· Processor registers: When not currently executing, these processor registers are saved

· Dispatch state: This tells the scheduler if the thread can execute or is waiting.

· Priority: The scheduler uses this to determine when it should execute. There are three classes with 32 levels within each class: Time Critical, Regular, and Idle.

The API, application programming interface, allows an application to assign it’s own priority. A process assigns threads a priority. The operating system uses round robin scheduling for those threads that have the same priority. To avoid starvation, OS/2 increases the priority of a thread at a given length of time. Both the Time Critical and Idle class threads have static scheduling. Time Critical threads are dependent on running in short periods of time for the smooth running of the application or the environment. Idle threads are run when there is no other work on the system to do. Most threads are run in the Regular class. Unlike the other two classes, Regular threads have their priority changed by the operating system depending on the activity of the thread and the behavior of the system.
Communication and Synchronization of Processes

When two threads of a similar process in OS/2 need to communicate or synchronize the task can be performed with relative ease due to the fact that the threads share their system resources. If two entirely different processes are trying to communicate and synchronize it becomes much harder to handle. OS/2 provides many different methods of handing interprocess communication such as- shared memory, pipes, queues and semaphores.

Shared Memory

A simple form of communication between two processes that OS/2 implements is shared memory. It works by a process setting aside part of its memory for sharing with other processes. The other processes request read access to the shared memory area. Then data can be exchange by the owner writing to that area and the process with access can then copy that data into their own memory.

Pipes

Pipes are a method by which processes can communicate with one another if and only if they are related process. For a process to be related they must be child processes of the same parent. A pipe is an area of memory that is read in FIFO order and can be up to 64KB in size. If the pipe is full OS/2 will not allow another process to write to it. If a process wishes to put something into the pipe it is copied into the pipe so that another related process can read it. No process may read the same data from the pipe twice.

Queues

A queue is created by a process and only that process and its threads are able to read from it. Other processes that wish to communicate with the creator process may be granted write access to the queue. The creator also decides if the queues are LIFO, FIFO, or Priority based. The processes do not write the actual data to the queue but rather a pointer to that data making the process of communication more efficient because there is no needless copying of data. For queues to work the processes that can use it for communication must have access to it or else when they try to read from it or write to it a trap will occur (Krantz, Mizell, and Williams, 1988)

Semaphores

Two or more processes want to have access to one device or area of memory. The system must make sure that they do not change or access the same device or area at the same time because the system will be in inconsistent and unpredictable state. Semaphores are one way to coordinate the different processes and their actions on the system. There are two types of semaphores used in OS/2; a system semaphore and a RAM semaphore.

A system semaphore can be created by a process or the operating system, the creator becomes the owner of that semaphore. Once the semaphore is created it can change ownership with time. If a process no longer needs to be owner of the semaphore it can either clear or release ownership, this action causes the operating system to look for any processes that are that are blocking on the semaphore. If there is a process blocking on that semaphore the awaiting process either sets the semaphore or gains ownership if ownership was released. Coordination occurs because if one task sets the semaphore the other task or tasks must wait until the semaphore is cleared. OS/2 plays a direct part in over seeing this process. For example, if the process with control over the ownership is terminated the OS will clear the semaphore.

A RAM semaphore is a much simpler semaphore and is not maintained by the OS. A RAM semaphore is just two sequential words of memory. Any process can create the memory and store what ever they want to in it. If another process desires access to the semaphore it must be granted access by OS/2 to the memory location. If the creator or owner of the RAM semaphore terminates abnormally or without releasing the semaphore the other processes will not be told and if they are waiting for access to the semaphore they will never gain access (Krantz, Mizell, and Williams, 1988).

Scheduling

In the multitasking environment of today’s modern computers the operating system must pick and choose which of the many processes get the CPU, in what order, and for how long. OS/2 uses a multilevel queue scheduling algorithm to decide the order in which process get to execute.

There are 4 priority groups each with 32 priority levels, leaving a total of 128 different priority levels. The four priority group in order starting with the highest priority are time critical, server, regular and idle. The time critical group is for communications and soft-real time applications. Server group processes are those that require network communication and data processing. Most common applications such as a word processor would fall into the regular priority group. The idle group is for the idle program and is only implemented if there are no other processes to execute (Booth, 1996).

Priorities for a process or thread are determined at time of creation by the programmer. However there are ways for a process or thread to gain a higher priority. A foreground boost occurs when an application that requires frequent input from the user will receive a priority increase so it can process the input from the user quicker. A starvation boost occurs when a program goes a period of time without getting to use the CPU. This can happen if there are multiple CPU intensive process’ running which have a higher priority. The time before a starvation boost occurs can be set by the user and once the time period has elapsed without getting the CPU the process with increase its priority by one. This can happen more than once until the process gains access to the CPU then it will return to its previous priority level.

Each of the 128 priority levels forms a queue. Within that queue of equal priority processes a round robin scheduling algorithm is used to determine who gets the CPU. The time slice for a time critical process is 8 milliseconds. The time slice for a regular program is 32 milliseconds, although it can be changed to a longer slice. These time slices can be preempted before the entire time elapse if a process with higher priority enters the ready state (Booth, 1996).

Memory Management

The great advantage of OS/2 over it’s predecessor, the Microsoft DOS operating system, in that it is able to address memory segments of up to 16 Megabytes. As well the OS/2 manages memory in a protected mode. This means that when a program attempts to access an illegal memory address the operating system will be able to catch this illegal access and deal with which will not end up crashing the system. The OS/2 also supports the use of virtual memory. Virtual memory is where the operating system makes use of the extra hard disk space when a program requests more memory than which is currently available. OS/2 is also capable of sharing memory with applications.

Using Dos calls to Allocate Memory:

The OS/2 can allocate blocks of memory up to 64KB by calling the DosAllocSeg function. In the ‘C’ programming language the call would take the form of DosAllocSeg(Size, &Selector, Flags). Whenever a program requests memory in OS/2, this is what it is actually called. The ‘Size’ parameter, which is used to select how big the memory segment should be, can be in a range from 1 to 65,536 bytes. If a program needs to have the maximum size allotted then you would set the size to zero. The DosAllocSeg will return an error code if memory allocation fails, or it will return a zero if it succeeds.

Next, the DosAllocSeg call stores the selector variable, which can also be thought of as the segment address into a descriptor table. This descriptor table holds the actual physical addresses and the length of the memory segments. These descriptor tables are not accessible by the application programs (Microsoft Systems Journal, 1987). We must note here that the selector variable is not actually the physical address of the memory. The selector is then converted into a pointer variable which includes a segment and an offset. The selector, which is returned from the DosAllocSeg is the upper 16 bits of the pointer. The last step in the DosAllocSeg call is to push the parameters onto the stack beginning with the size parameter and then the address where the operating system will store the selector. Interestingly enough the DosAllocSeg offers the option to completely discard the memory segment. This is what the third flag does in the call.

When the operating system needs more memory then it has available for main memory it will save a memory segment to the hard disk to free up space. It uses the LRU algorithm, or the least recently used algorithm to do this. When the segment is requested again, the operating system must reload it back into main memory. This is the normal operating instruction for the OS/2 when there is a program that requires more memory than is available at the time. However, setting the flags in the DosAllocSeg call will tell the operating system to completely throw out the memory segment if space is needed, without saving the memory segment to disk first.

In addition to calling the normal method to allocate memory to particular programs, there are also functions that will allow the operating system to change the size of a particularly allocated piece of memory to allow more efficient use of it. To change the size of a memory block a typical call in the OS/2 operating system would use the DosReAllocSeg(NewSize, Selector) call. A program is as well able to free up a block of memory in which it no longer needs by calling the DOS call DosFreeSeg(). The OS/2 does automatic memory allocation in that it will free up any memory when the application using that memory terminates.

Shared Memory and Dynamic Linking

The OS/2 operating system was also used widely as a network operating system, meaning that multiple users could have access to the same files/ programs at one time. In order to allow for this the operating system must be able to allow for shared memory segments. In essence, a parent process is currently in execution and then another user logs onto the system and requests the same program through a child process. This new process does not necessarily have to create a whole new memory block for that user to be able to run the program, but it can harness that memory space that the parent process is using. Obviously this entails sharing of just the program source code and separate areas of memory will need to be created for users who wish to write to a file. Sharing memory segments is done in the OS/2 using the DosGiveSeg command. It takes the parameters, Selector, ProcessID, and &NewSelector. The ProcessID refers to the new program that will receive the memory. Programs may also use the DosGetSeg command to gain access to a block of memory allocated by another program. Next we can use the DosAllocShrSeg command to give a memory block a name when it is allocated. The name will look almost exactly like a file except that it will start with an extension of SHARMEM (therefore an example of a segment name would be SHAREMEM appname). One caveat to this scheme is that only one named memory block with that unique name can be running at a time. But as we have seen with the functionality of the DosGetSeg command, we can see that by using the DosGetShrSeg command another process can have access to the shared memory block (Petzold, 1988).

Along the topic of memory-sharing, something can be said about the way in which memory is shared can be said about the MS-DOS operating system along side the OS/2. With the MS-DOS operating system linked libraries for programs were hard-coded into the programs themselves. With the OS/2, however, the .exe header file of programs allows run time binding of the libraries. Thus, the overall effect of this type of sharing allows library routines to be shared between multiple processes and saves memory space as well (Microsoft Systems Journal, 1987).

Memory Protection
It is important to be able to protect memory segments because we do not want programs accessing illegal segments which could cause the operating system to crash. OS/2 provides some memory protection via the memory segment attributes. Each memory segment holds attributes as to how it can be accessed i.e.: “ex” for executable, “ro” for read-only and “rw” for read-write access. Each processes local descriptor table enforces memory protection between programs. If a program attempts to load a segment register with a selector, which is not valid for its own descriptor table, then the operating system will generate a hardware interrupt. The OS will take control to remedy the situation (Microsoft Systems Journal, 1987).

Least Recently Used Algorithm
The OS/2 makes use of the least recently used algorithm to swap out memory segments when there is not enough physical memory space to allocate a program. This is done by using a special bit in the descriptor table. This bit is either set or unset to indicate if the memory segment that is trying to be accessed is memory resident or not. When an application requests a memory segment that has been swapped out of main memory a page fault occurs. The virtual memory manager then takes control and reads the needed segment from the hard disk into physical memory. It then updates the descriptor table to save the changes and the restarts the process that requested the memory segment (Microsoft Systems Journal, 1987).

Directory Structure

Before we can write any data at all to a hard disk, it must be formatted. This formatting is done so that the operating system knows how to access the data from the disk. When a blank disk is formatted, OS/2 creates an empty directory known as the root directory. The operating system uses a hierarchical scheme to organize files. When the computer first starts, it starts the user in the current directory or working directory. The following directories are created automatically when OS/2 is installed: \dosdir, \dosdir\dos, \dosdir\install. The following crucial files are also created, CONFIG.SYS, AUTOEXEC.BAT, and STARTUP.CMD. (Campbell, 1988).

File System

The file system that OS/2 uses is in almost every way similar to that of the DOS operating system. Both systems use a boot sector, a root directory, as well as a file allocation table, or more commonly referred to as the FAT. The first item in this list, the boot sector, contains a table called the BIOS Parameter Block or the BPB which describes all of the disk’s characteristics including the heads, tracks, sectors/ track, etc type of information (Duncan, 1989). The root directory is the starting point where the operating system starts when it first boots (see section on “Directory Structure”).

The OS/2 uses the FAT filing system. In this arrangement each file in the system is ordered as a linked list of disk blocks. A block is a collection of bytes such as 512. Each block may be scattered anywhere on the disk. Each block contains a pointer to the next block in the list which enables the tracking of each block. In the FAT, there is one entry in the table for each disk block which is indexed by block number. This index is used the same way as a linked list is used to keep track of the blocks. If there are any unused blocks, they are indicated in the table by a zero value. The main disadvantage of using a FAT is that there is much overhead. There can be a significant number of disk head seeks if the FAT is not cached. The operation of a disk head seek consists of the disk head moving to the beginning of the partition to reach the FAT itself and find the location in the FAT which would be the beginning of the linked list. Next the seek would traverse through the list sequentially moving to the block itself (Silberschatz, 2002).

To conclude, we see that IBM’s OS/2 offered a new way of thinking for operating systems. At some times it was the better implementation on the market. But, due to the lack of advertising power in the industry, and the wheel and deal nature of Microsoft, it never had a real chance of grabbing the market.

Bibliography

Both, David (1996). “Data Book For OS/2.” URL: http://www.millennium-technology.com/default.nsf

Both, David (2000). “History of OS/2.” URL: http://www.os2bbs.com/os2news/OS2History.html

Campbell, John L. (1988). Inside OS/2: The Complete Programmer’s Reference. Blue Ridge Summit, PA: TAB Books Inc. QA76.76.O63 C36 1988; ISBN 0-8306-9319-6.

Duncan, Ray. (1989). “Comparing DOS and OS/2 File Systems”. PC Magazine., Feb 14

v8 n3 p321 - 327.

Gagne, Greg. Galvin, Peter Baer. and Silberschatz, Abraham (2002). Operating System

Concepts: Sixth Ed. New York, NY: John Wiley & Sons, INC.

ISBN 0-471-41743-2.

Krantz, Jeffrey. Mizell, Anne. Williams, Robert (1988). OS/2: Features, Functions, and

Applications. New York, NY: John Wiley & Sons INC. QA76.76.063K74 1988;

87-34469; ISBN 0-4716-0709-6.

Microsoft Systems Journal. (1987). “OS/2 Memory Management”. May v2 n2 p34-36.

Necasek, Michal (1998). “The History of OS/2”. URL: http://pages.prodigy.net/michaln/history/index.html

Petzold, Charles. (1988). “OS/2 Memory Management (Environments)” PC Magazine.,

Jan 26 v7 n2 p.313-318.

Timur Tabi (1998) “High Resolution Timing Under OS/2.” URL: http://www.edm2.com/0601/timing.html

Liz McGinniss: microprocessor capabilities, multitasking,

Chris Axford: user interface, hardware platforms, process control block, edited and

compiled report

Erik Swensson: History, Inter Process and communication, Scheduling

Chris Evans: Memory Management, File Systems, Directory Structure

PAGE
14

