NEXTSTEP: Operating System

CS-450-1 Operating Systems

Fall 2002

Wes Deviers

William Pope

Jeremy Dunn

Shaun O’Kelley

Table of Contents

Introduction

pg 1
History

pg 1
Platforms

pg 1
File Systems

pg 1
Symmetric Multiprocessing

pg 2
CPU Scheduling

pg 2
Memory management

pg 3
Task Control Block

pg 4
Thread Models

pg 5
Synchronization

pg 5
User Environment

pg 6
Multi-User Support

pg 6

Introduction

The purpose of this paper is to discuss the NEXTSTEP operating system. We will cover the following a brief history of NEXTSTEP, the platforms in which it can be ran, User and Thread traits, the approach to Memory Management, the approach to Scheduling, and the traits of the File System.

History

NEXTSTEP was first created at NEXT Software by Steve Jobs and released September 18, 1989. It was designed for the NEXT Cube workstation. NEXT forced to discontinue the Cube, however they continued to develop software and their operating system NEXTSTEP. In the mid 1990’s Apple computers acquired NEXT Software it was also announced that Steve Jobs would stay on as a consultant. NEXTSTEP released version 3.3 . There was a version 4.0 planned for released but has been renamed OpenStep for Mach for all intents and purposes.

Platforms

NEXT Software initially designed NEXTSTEP to run on the Cube, a workstation made by NEXT and based loosely on the Motorola 680x0 processors. NEXT had a port developed of their GUI to run on top of IBM's AIX, initially on Intel 386 processors, but finally on the RS/6000 RISC processor. To develop a new port of NEXTSTEP for the Intel 486 processors they sought help from Intel this was released in June 1993. Over the coming couple of years, NEXT consolidated their OS on Intel hardware, and produced new ports running on Hewlett-Packard's PA-RISC workstations, and Sun's SPARC 4, 5 and 10 systems. The port from Motorola 680x0 to the Intel processors gave NEXT an OS that could cope with both big and little endian architectures.

File System

The NEXTSTEP file system is much like the file system used by the Unix OS. Instead of using the command interpreter or shell NEXTSTEP uses a graphical interface to allow use of the Unix OS. This graphical interface is an application known as the Workspace Manager. It allows users to manage their files by manipulating the icons. When the Workspace Manager is opened users will not see most of the folders normally in Unix. NEXTSTEP’s root folder contains following folders:

· LocalAdmin

· LocalApps

· LocalDeveloper

· LocalLibrary

· Yourname

· Net

· NEXTAdmin

· NEXTApps

· NEXTDeveloper

· NEXTLibrary

· user

The four Local folders on the list contains applications, documents and other resources that a specific to a particular site. There are also four top-level folders that begin with the NEXT prefix. These top-level folders contain documents, resources, and applications that are originally bundled with the computer. The folder named yourname is a folder for each of the user on the system. The folder named user is each user’s home folder. The net folder would be used if the users have remote access.

Symmetric Multiprocessing

Multiple CPUs on a computer carry out tasks concurrently. Symmetric means the CPUs can perform different tasks at the same time–for example, one CPU could be applying a Photoshop filter while another performs a spreadsheet calculation. Asymmetric multiprocessing means multiple CPUs can work on different parts of the same process only, dividing up the subtasks within the Photoshop-filtering task, for example. Under a Mach-based OS like OpenStep and NEXTSTEP, multithreaded programs can automatically take advantage of multiple CPUs without extra effort. The OS runs different threads of a program separately on as many CPUs as are available.

Even though a user runs tasks, and each task is composed of at least one thread, Mach sees only the threads. This aids Mach in its seamless support for multiprocessing. Threads, after all, are only objects, and a thread on another processor is just a thread with somewhat different behavior. Mach maintains one global run queue of threads awaiting execution for the entire system, as well as individual local run queues for each processor. The threads in the local queues have absolute priority, on the assumption that they are likely to have some time-critical function to perform.

CPU Scheduling

In the Mach kernel threads have dynamic priorities that range from 0 to 127. Generally these priorities match the ratio for the thread’s competition with one another. The generated priorities are based on an exponential average of each CPUs momentary usage. The kernel reduces the priority of threads as the CPU they are assigned to is used more. That is, a thread that recently used the CPU for a large amount of time has the lowest priority. Mach uses the priority to place the thread in one of 32 global run queues. These queues are searched in priority order for waiting threads when a processor becomes idle. Mach also keeps per-processor, or local, run queues. A local run queue is used for threads that are bound to an individual processor. Thus, instead of using a fixed-length quantum, Mach varies the size of the time quantum inversely with the total number of threads in the system. It keeps the time quantum over the entire system constant.

Memory Management

One of the components provided by Mach on which NEXTSTEP is built upon are the memory management capabilities. Mach uses a virtual memory system that is implemented through demand paging. According to NEXTSTEP For Mach 4.2 Developers Guide Mach gives each task a 4-gigabyte virtual memory space. This address space is a series of mappings from ranges of memory addressable to the task and memory objects. There are five ways a task can modify its address space: it can allocate a portion of virtual memory as long as it is on a page boundary, it can deallocate a portion of virtual memory, it can set the protection and specify the inheritance of a portion of memory and it can create and manage a memory object that can be mapped into the memory space of another task.
The process that NEXTSTEP uses to map sections of virtual memory into pages of physical memory is known as demand paging. It is called this because only when a page of memory is needed is it then copied into physical memory. When a process is swapped in, the pager guesses which pages of memory that process will need until it is swapped out and only brings those pages into memory. If a page is referenced that is not in physical memory then a page fault occurs. The algorithm for handling this fault is pretty clear-cut.

1 - an internal table is checked that is usually in the process control block to see if the reference was valid or not.

2 – if invalid the process is terminated if it is valid the page is brought in

3 – a free frame is found

4 – a disk operation is scheduled to read the page into the frame

5 – when completed the internal process table is updated to reflect the new page in physical memory

6 – the process is restarted at the instruction that caused the trap

In pure demand paging the process starts execution with no pages in memory, right at the start there is a non-memory resident page referenced and there is an immediate page fault, which causes the needed page to be brought into physical memory. If an address is referenced that is not in physical memory then the appropriate pager is requested to read the referenced page into virtual memory. Then the virtual page is mapped to the new physical page of memory. When there are no empty pages left in physical memory the Mach kernel swaps out an old page of physical memory with a new one using the least recently used algorithm for page replacement.

The least recently used algorithm for page replacement is pretty straightforward. The pager selects the page that has been referenced the least recently and swaps that one out to make room for the new one. There are two ways finding the least recently used page can be implemented. The first is with a time-of-use field in the page-table entry. Whenever a page is referenced the contents of the clock register are copied into that field. The pager then has to search that field in all the page-table entries and find the one with the lowest value. The other way the least recently used page can be determined is with a stack of page numbers. Whenever a page is referenced it is put on top of the stack. The least recently used is always on the bottom.

NEXTSTEP uses the memory management facilities provided by Mach. This is a virtual memory system implemented using demand paging. The algorithm used for page replacement is least recently used.

Task Control Block

In Mach, and by extension, in NEXTSTEP there is nothing known as a process. The UNIX concept of a process is split into two abstractions; the task and the thread, so the data structure would be known as a task control block instead of a process control block.

A generic PCB contains many pieces of info that are associated with a specific process. These can include but are not limited to:

Process state - this can be new, ready, waiting, etc.

Program counter – keeps track of the address of the NEXT instruction to be executed

CPU registers – such as accumulators, index registers, stack pointers and general purpose registers

CPU scheduling info – priorities and scheduling queues

Memory management info – base and limit registers and page or segment tables depending on the:

Accounting info – CPU time used, time limits, account numbers, job or process numbers and so on

I/O status info – list of I/O devices allocated to the process, list of open files etc.

Specific information on the Task Control Block or even the fact that such a data structure exists here was not readily available. Obviously all of the information that would be in there is located somewhere. The best available information was in the NEXTSTEP For Mach 4.2 Developers Guide where it describes what a thread is. It says, “It's a lightweight process executing within a task, and consists solely of the processor state (such as program counter and hardware registers) necessary for independent execution” (NEXT, 3). The counter and registers are items that are normally found in a TCB.

Thread Models

The NEXT Mach Operating System varied from the traditional abstraction of a “process”. In UNIX, for example, a process is an image of the running program in memory. The mach kernel, however, separated a process into two logical abstractions, a “task” and a “thread.” Tasks were used as abstractions and had the data access rules, the virtual memory tables, the current running processor, and other similar data. Tasks basically served as a way for the operating system to easily address threads. (NEXT, 3)

Threads were the actual executing process. A thread was a “lightweight process” that executed within a task’s framework, and contained information that was relevant and separate for the executing thread. Such information included data used for context switching, like the program counter and any saved registers. Each thread was contained within a single task, although a task could have more than one thread, meaning that programs could be multithreaded. Threads were also the basic unit used for CPU scheduling, and all threads in a single task shared the same memory address space. (NEXT, 4) Communication between kernel threads was accomplished using a “port” system, similar to the way TCP/IP operates. Ports were simple message queues, with associated UNIX-like access rights. Each task had at least one port assigned to it for use in communication outside the task’s memory space.

At the user level, NEXTSTEP makes use of C-threads, which is a standard library provided by the C programming language. Where mach kernel threads (the processes that run as part of a task) were managed by the kernel, the NEXTSTEP C-Thread libraries were used by programmers to control the threads of execution for a multithreaded program, such as a word processor. The NEXTSTEP C library also provided a convenient way to make thread-safe applications using mutual exclusion with the aid of a mutex, and synchronization between user threads. Between C-Threads and the kernel-level task/thread system, NEXTSTEP was a fully functional multitasking operating system. (NEXT, 16)

Under the Mach kernel, which NEXTSTEP is based on, each thread can run simultaneously on a separate processor if the machine has more than one processor. Multiprocessing is not limited to the same task, so any thread that is available can be assigned to a CPU that is available. Synchronization becomes an issue, but much of it is handled by the hardware.

Synchronization

The Mach kernel provided only basic synchronization between threads, by allowing the programmer to set a mutex and which is shared between threads in the code. In keeping with the development philosophy of Mach, implementation of semaphores was left to the developer. Based on the mutex system, any number of more advanced synchronization systems could be developed, including semaphores. There were, however, some additional kernel-level API calls that aided in synchronization. One example is the spin-lock, which is used to lock portions of shared memory exclusive use by a thread. (Sync, 22)
User Environment

NEXTSTEP running on NEXT hardware operated as a hybrid between a GUI (graphical user interface) and a CLI (command line interface), similar to the way the X Window System is used on other UNIX-like operating systems. The GUI was active as soon as the machine turned on, but it would display system startup messages in a terminal window. Once the machine had booted fully, a login window would be displayed and a user could log in. Once a user logged in, the primary interface was a GUI, although a terminal emulator could be reached at any time, allowing for direct access to the command line.

Unlike many UNIX-like systems, the GUI for NEXTSTEP did not seem to be merely a way to display more than one terminal emulator simultaneously. Instead, NEXTSTEP provided a full desktop in the modern sense, with access to icons, context sensitive menus for mouse clicks, and GUI versions of any common programs. In fact, for everyday use it was not normally necessary to use the command line shell. See Appendix A for a screenshot of an example NEXTSTEP desktop.

The CLI remained fully functional, however, and came with a few command interpreters that were well known in the UNIX world, such as tsch, csh, and bash. The GUI provided a terminal emulator icon for easy access to the shell, so the design of the user interface was obviously designed to be usable as both a simple GUI and also a power powerful command line.

Multi-User Support

NEXTSTEP supported multiple users, both via network services and at the physical workstation. Multiple users over the network could log in using services such as telnet (and later, ssh) and have access to the machine using the command line interface. At the physical machine, and valid user could log into the graphical desktop and access their own files and personal preferences.

Network user management was included into NEXTSTEP from the first release, because NEXT wanted the operating system to be usable in a client/server relationship, where the NEXT workstations could function equally. Because of that, NEXT designed a system called NetInfo, which was a user validation system for networked computers. Using NetInfo, a each NEXT workstation on a network would have permissions as to what users were allowed to log on, what files they had access to, what times they could log in, and a number of other features (NEXT Release 3.3, .

Because of the UNIX heritage of the Mach kernel, NEXTSTEP used essentially the same system as UNIX. Each file or directory has bits set for owner, group, and “everybody”, with read, write and execute permissions for each. This simple, but effective method of access control provided privacy between different users, which is necessary in a multi-user system.

References

McCarthy, Thomas. Intro to NEXTSTEP. Accessed December 3, 2002

http://www120.pair.com/mccarthy/NEXTstep/intro.htmld/index.html.

NEXT Software, Inc. NEXTSTEP 4.2 Developers Tools and Guide, CDROM edition.

1994. In file: /Developer/Reference/OperatatingSystem/Part1_Mach/ 01_Concepts/Concepts.rtf.

NEXT Software, Inc, Release 3.3 Documentation, 1994

http://www.channelu.com/NEXT/NEXTStep/3.3/nsa/05_UserAccounts.htmld/ index.html
