Minix

CS450 Operating Systems

Section 2

Jeff Ward, Robert Burghart, Jeb Collins, Joe Creech

In 1975, the source code for Unix version 6 was freely available. Colleges and universities took advantage of this and used the source as part of the curriculum of their operating system courses. Professors would demonstrate how operating system concepts could be implemented in an actual operating system. In this way, Unix acted as a bridge between operating system theory and practice. When Unix version 7 was released, AT&T updated the license on the source code, making it more restrictive, to the point that colleges and universities had to stop using it.

Dr. Andrew Tanenbaum felt that an example of a working operating system was an invaluable tool for reinforcing operating system theory, so he began developing an operating system for classroom use. His goal was to create an operating system that, on the surface, would be fully compatible with Unix version 7 but the source would be completely different (this way, there would be no legal problems with AT&T). Minix is the result of his efforts; it is easy for a student to understand while including all the components of a full operating system.

While Minix worked well as a learning tool, so well in fact that many users wanted to extend its limited capabilities and make it a full user operating system. However, Dr. Tanenbaum flatly refused to extend Minix beyond its original purpose as a learning tool. After much debate on the Minix newsgroup between users, Linux Torvalds said that he was going to make a clone of Minix, one that could be improved by its user base and built into a personal operating system. The result of his efforts is what is now known as Linux.

Minix On Booting

When a computer running under Minix is booted, the BIOS loads the boot sector which in turn loads the bootblock in the Minix partition. The bootblock is a traditional property of Unix operating systems and resides in the first kilobyte of the partition. The bootblock stores a program, known as the monitor, which in turn is used to load Minix or any other operating system on the computer. The monitor program can also be used to set kernel parameters which are passed to the kernel when it is loaded.

Minix On Processes

Minix has three levels of process handling: user processes, server processes, and I/O tasks. User processes include text editors and shells, sever processes are things like the memory manager, the file system, network servers and daemons, and I/O tasks include disk tasks, terminal (tty) tasks, and clock tasks. Each layer has its own separate scheduling algorithm, but each layer is run in a specific order: I/O first, then server, then finally user processes.

The basic scheduling for the server and I/O tasks is a simple First in, First Out algorithm, where each process is run until blocked. Such a simple algorithm works fine here since I/O and server taskes spend the majority of time waiting on input on low traffic machines, like the educational machines Minix was meant to run on. The User processes, however, are scheduled using a round robin, uses timed interrupts to tell processes when they must give up the CPU.

Minix does not support threads intrinsically. However, since it is mostly POSIX compliant, it is possible to use several of the available user thread libraries, such as cthreads or pthreads.

Minix On Deadlock

Minix ignores deadlock; as Tanenbaum put it, “True to its heritage, MINIX follows the same path as UNIX with respect to deadlocks: it just ignores the problem altogether.” There is, however, a good reason for this. Minix has no dedicated I/O devices so the only places deadlocks can occur are with implicit shared resources. Examples of implicit shared resources are structures that describe processes (like the process control block) or files in the file system. Since there are no deadlock algorithms yet that can deal with these structures, Tanenbaum says that the best solution is to simply leave well enough alone.

Minix on Input and Output

As with everything else in it, Minix has a very simple structured method for dealing with IO. Interrupts are the bases of communication between the hardware and software. Interrupt handlers are used as the first layer between hardware devices and the rest of the system (including the device driver). For the most part all an interrupt handler is responsible for is passing information between a piece of hardware and an device driver. Some interrupt handlers can also pull double duty like the clock interrupt handler. It buffers clock ticks since they occur so often and communications between the handler and the device driver could quickly overwhelm a slower system.

Device drivers are full processes that run in the task layer of Minix. The drivers interpret the information from the interrupt handler so that the operating system knows what the device is trying to say. Above the device driver is the device-independent software layer that provides a standard interface for user-level programs. The standard C library is an example of this device-independent software layer with its fprintf and fscanf, which can be used to write to the screen, hard-drive or floppy disk.

Minix on Memory

Minix uses a flat memory model (meaning there is no virtual memory or segmentation) with a list of “holes,” which unused portions of system memory, organized by memory address. When a new process is started or requests memory, Minix locates a hole that can fulfill the request. The process is then given this first available hole. Once the process is in a memory partition, it is not allowed to move or resize the partition.

In relation to current memory allocation systems, the Minix system is archaic. It has no protected memory, swapping, or compacting. Tanenbaum list two reasons for this. First, since Minix was designed simply as an operating system for students learning operating systems, there was no need for a more complex memory management system. Second, Minix was design to run on all x86 Intel chips. This includes the 8088, which can’t handle more advanced memory features used in more current operating systems, like segmented memory
.

Bibliography

Tanenbaum, Andrew S. and Woodhull, Albert S. Operating Systems: Design and
Implementation. Second Edition. Prentice Hall, Upper Saddle River, New
Jersey. 1997

