Use of the Overlay Technique in MS-DOS to Circumvent the 640K Conventional Memory Barrier

CS 450, Operating Systems, Section 1

Fall 2002

Andrew C. Vogan

This work complies with the JMU Honor Code.

Table of Contents

Introduction
1

The Ubiquitous DOS
1

History of MS-DOS
1

Features Not Available in MS-DOS
3

Features Available in MS-DOS
3

80x86 Architectures
4

80x86 Real Mode Addressing
4

Memory Management in MS-DOS
5

The OS Loading Process in MS-DOS
6

Overlays from the Operating System’s Perspective
7

Overlays from the Programmer’s Perspective
7

Summary
8

Acronyms Used
9

Bibliography
10

Introduction

The purpose of this paper is to explain why the overlay technique was used to circumvent MS-DOS’s 640 KB conventional memory limitation. To accomplish this, the following sections will introduce the MS-DOS operating system, and explain how its minimum supported hardware dictated the design of its memory management system and supported execution mode. DOS’s memory layout will be discussed in detail, including showing how in the load process the operating system internally overlays itself. Finally, the process of user program overlaying will be discussed, both from the perspective of the operating system environment, and of the programmer’s usage and design considerations.

The Ubiquitous DOS

At the time of this writing, the operating system most readily available in new desktop systems is Microsoft Windows XP (based on the near monopoly one sees in any large sampling of catalogs and stores). Windows XP, like other popular modern operating systems, provides features far and away superior to any version of the archaic and obsolete MS-DOS. So why is MS-DOS valuable for our study? There are two reasons:

1. because MS-DOS was for a time the most popular desktop PC operating system. Its design also greatly influenced development decisions for Microsoft’s later, and also widely popular operating systems.

2. because some of the creative techniques programmers used to operate within the byzantine execution environment of MS‑DOS are still applicable elsewhere in operating system development and studies.

A final note if the reader is not convinced of the ubiquity of MS-DOS: most people that use PC’s today use Wintel computers (with Microsoft Windows running on Intel processors). To this writer’s knowledge, it is universally true that if these users do not have DOS installed, they do at least have an MS-DOS emulator. Thus the MS-DOS operating system has by no means gone away.

History of MS-DOS

MS-DOS was originally an operating system named “86-DOS” which was created by Seattle Computer Systems. Microsoft at first licensed, then purchased 86-DOS in order to license it in turn to IBM as an operating system for the IBM PC. The version of MS-DOS licensed to IBM was re-branded as “PC-DOS” and assigned different versions numbers for IBM’s distribution.

After the IBM PC was released in fall of 1981, and when there subsequently grew to be a large population of IBM-compatible computers, Microsoft’s operating system grew to enjoy significant market share. Not only did it displace older operating systems such as CP/M, but it also managed to derail IBM’s own designs on the operating system market. Partly through the popularity of MS-DOS and the preparation it laid for the success of Microsoft’s future operating systems, IBM’s independent development plans for 80x86 operating systems would be consigned to failure.

“DOS” as an acronym means “Disk Operating System.” This name is particularly appropriate for MS-DOS, since aside from basic disk features, the DOS operating system provides relatively little for programmers. To early adopters of PC’s, early versions of DOS compared favorably to CP/M but unfavorably to UNIX. But despite its limitations, MS-DOS managed to become during the 1980’s not only the OS primarily selected by IBM for release in its PC’s, but also the most popular and widely-used OS for PC’s. By the first few years of the 1990’s when Microsoft released an (arguably) worthwhile version of its Windows platform, its prominence in MS-DOS gained its new GUI operating system automatic success, even to the extent of trouncing IBM in its own bid for seizing operating system market share.

It has been a continual thorn in the developer’s side that Microsoft has tended to hang onto early design decisions and seemed slow to change when superior technologies were available. Certain MS-DOS design decisions of the 1980’s governed later directions taken for Microsoft operating systems of the 1990’s and later. For example, Windows 3.x not only operated on top of MS-DOS, but also was a good citizen as an MS-DOS application, even using device drivers loaded within MS-DOS. Windows 95, and Windows NT, while they broke with 3.1’s model of running from MS-DOS, often still used the inferior FAT or FAT32 file systems, part of the legacy of MS-DOS.

Part of the focus of this paper is the serious operating system limitation that became a problem due to Microsoft’s slowness to change with the availability of new technology. MS-DOS did not take advantage of improved memory addressing modes supplied by Intel processors after the 8088, even years after these improved processors were widely owned by MS-DOS users. Specifically, MS-DOS failed to support the new Intel processors’ ability to address memories larger than 1 MB.

NB: The acronyms “DOS” and “MS-DOS” will be used interchangeably throughout this paper. All discussion of features, unless noted otherwise, applies to MS-DOS version 3.2, released in 1986. This version was chosen because it was considered (by many accounts) to be a stable version, and also because it implemented the most important features now considered fundamental to DOS, including the File Allocation Table or FAT file system and network support. Also, by this time MS-DOS was becoming the most popular operating system for PC’s, and many successful programs were being written to run under it.

Features Not Available in MS-DOS

Perhaps in the context of studying operating systems, it will be instructive first to cite features DOS does not have, since that makes up the more impressive list. Operating system features DOS lacks include:

· multitasking, and a CPU scheduler.

· multiprocessor support.

· thread support.

· multiuser support.

· hard or soft real-time support.

· fault tolerance.

· deadlock management.

· paged memory.

· a graphical user interface.

· file system security.

This dearth of features was not really due to DOS’s release in the 1980’s, since many of these technologies had already been developed and matured in operating systems for mainframes and minicomputers. But feeling the lack, many programmers took the initiative to make their programs in effect little “operating systems unto themselves” by implementing techniques such as overlays or basic security, to gain functionality the MS‑DOS operating system proper did not provide.

The challenge for these operating system “pioneers” was to keep compatibility with the existing MS-DOS environment. Since each program could take for granted exclusive use of the processor, perhaps the main challenge was to respect the memory environment of MS-DOS. A later section will describe MS-DOS’s memory environment in detail.

Features Available in MS-DOS

MS-DOS provides the following features to DOS applications:

· Clock Access

· Memory Management

· File Management

· Device Input/Output (Character-based)

· Program Launching, or “Spawning”

The procedure for calling a kernel function is to initialize registers (as required for the call), and then to set the software interrupt corresponding to the function desired. The most common interrupt for MS-DOS functions is 0x21. Microsoft’s MS-DOS Programmer’s Manual documents the appropriate register contents and interrupts for DOS system commands.

80x86 Architectures

MS-DOS was designed to be compatible with the Intel 8086 CPU, and all future similar CPUs. The 8086 provided 16 bit registers and an 8-bit data path, and could address 20 bits, or 1 MB of memory, using its own peculiar segmentation scheme (discussed below). Its mode of execution and addressing is referred to as “real mode.”

Intel produced other processors compatible with the 8086. These will be referred to in this paper as 80x86 CPU’s. The most popular were the 8088, 80286, 80386, and 80486. Each one provided complete compatibility with the previous CPU, but also added new features. For example, the 80286 not only supported “real mode”, but also added a “protected mode”, providing support for addressing up to 16 MB of memory. The 80386 added yet another “protected mode,” this time supporting a full 4 GB of memory, not wasting any of the 32-bit address. (The 80486 added new instructions, but only supported the same three modes of execution introduced in the other three processors.)

Because MS-DOS was designed for compatibility with all 80x86 processors, Microsoft made the decision to limit MS-DOS to the 80x86 real mode of operation. The result was that all DOS programs are limited to real mode, including addressing only 1 MB of memory. And while in the early 1980’s 1 MB may have seemed like a sufficient amount for programs that could run comfortably on an old 64K machine, the point was quickly reached when 1 MB was no longer sufficient.

80x86 Real Mode Addressing

The Intel 80x86 “real mode” uses a segmented addressing scheme with 32 bits for the address (16-bit segment and 16-bit offset). One might suppose this would allow 232 addressable bytes, or about 1 GB – but that is not the case. The 8086 only supports 20 physical address lines, and the 32 bits of the address are combined to produce a 20-bit physical memory address. Thus 80x86 processors running in real mode only support 220 bytes, or about 1 MB of memory.

To create a physical address from a 16-bit segment and offset, the processor’s circuitry first multiplies the segment by 16 (in effect appending a zero in its hexadecimal representation), and then adds the offset value. This results in a 20-bit number that is applied directly as an address to physical memory, whether its range happens to map to the main RAM or to ROM.

Note that each segment base location is separated from others by 16 bytes, and that the offsets can be up to 64 KB in size. This means a side effect of the design is that there can be multiple 32-bit segment/offset pairs that map to the same location in physical memory. (One standard among MS-DOS programmers for eliminating this ambiguity is to always represent hard-coded segmented addresses with an offset portion that is less than or equal to hexadecimal F.) Another effect of this design is that the maximum segment size is 64 KB.

When programs issue instructions dealing with memory locations, they typically deal with certain segments implicitly, based on values in registers. For example, the register DS represents the “Data Segment” base for a given DOS program’s addressing. A program can access memory using a 16-bit pointer and the implicit segment base, or it can modify the segment to the desired base, then access memory with the offset value. This provides an easy way for programs to be written in a way not dependent on the location to which they will be loaded in memory.

Memory Management in MS-DOS

From the perspective of an MS-DOS programmer, there are several ways to classify and divide system memory. These are summarized below.

Addressable memory consists of memory positions located from address 0x0 to address 0xF FFFF FFFF – all the memory the 8086 chip’s 20 physical address lines can reference.

Extended memory consists of any memory positions stored over the 1 MB limit, out of the addressable range of real mode programs.

Conventional memory is the first 640 KB of addressable memory. This is the area where both MS-DOS and the user programs reside. (The 380 KB of memory above conventional memory is reserved for uses such as video paging and certain device drivers, and is inaccessible for the use of DOS or of a DOS application.)

The transient program area (TPA) is the area of conventional memory available for allocation to programs. Sometimes part of the MS-DOS command shell occupies this area; but this transient part can be overlaid with users programs as necessary, since it will be loaded from disk again as soon as control returns to the shell.

The largest contiguous block of memory MS-DOS can allocate for a program is 64 KB, which is also the largest possible segment length (recall that the offset portion of an address is 16 bits).

One of the problems with DOS over the years has been its permissiveness. A program operating in real mode can modify any portion of memory it likes, without regard to other applications in the system. Incautious memory usage by a program may cause no problem as long as only one program is run at a time, and that program never needs to spawn another. But the worst side effect comes about when a program interferes with MS‑DOS’s own memory, causing corruption and possibly crashing the user’s session. Of course, if programmers strictly adhered to using DOS’s memory and program management features, everything in the operating system would work as documented.

The OS Loading Process in MS-DOS

Perhaps the best way to understand MS-DOS’s memory organization is to follow the process of loading memory with the operating system, starting with the system boot.

When the computer is either powered up or reset, program execution begins at address 0x0FFFF0. This is a feature of the Intel 80x86 family of processors, not of MS‑DOS. The hardware will map that address to an area of ROM where a JUMP instruction is stored. Following this instruction, the CPU’s execution is transferred to another ROM location, where various system startup tests and the ROM bootstrap code are executed. After successful tests, the ROM bootstrap reads the disk bootstrap program into an arbitrary memory location, from the first sector of the disk (or “boot sector”).

The disk bootstrap program is a program MS-DOS installs in the boot sector. The first thing this program does is to check the disk to see if IO.SYS and MSDOS.SYS respectively are the first two files stored on the booted disk. If so, then they are both directly loaded, and execution is transferred to the entry point of IO.SYS. IO.SYS contains both permanent BIOS routines to handle hardware devices, and transient loading routines. When IO.SYS has finished its initialization functions, it relocates the kernel (loaded from MSDOS.SYS) and overwrites its own transient portions. Thus during the load and initialization process, DOS performs its own overlaying, as different code blocks are run and are no longer needed.

Finally, the DOS kernel and its associated memory storage are positioned at the bottom of memory, followed by the resident portion of the command interpreter. When a user program is launched, all free conventional memory, including the area used by the transient portion of the command interpreter, becomes available for allocation to the user program. Then when control returns to the command interpreter, it loads itself completely into memory again to support the functions it provides when exclusively running.

Because the MS-DOS operating system provided such flexibility, programmers have been free to come up with their own operating system-like features, such as installing custom interrupt handlers, and even switching to different processor modes. Since the latter is a truly advanced and formidable task, some programmers opted for overlays, for lack of a way to access the extended memory region.

Use of overlays in MS-DOS provided several benefits. It allowed the program to:

· solve the problem of limited conventional memory for loaded programs.

· remain a “good citizen” of MS-DOS, by not accessing any memory space other than what the DOS operating system’s own memory management functions allocate.

· have code and data of greater size, limited only by the hard disk’s storage.

Overlays from the Operating System’s Perspective

From the operating system’s point of view, when a program requests to load an overlay, it is really asking to load the code, but neither to prefix the code in memory with a PSP, nor to have the processor jump to the start of the newly loaded code. Thus the operating system’s only responsibility is to remember the memory allocation.

To activate an overlay in MS-DOS, a program sets the 8-bit register AH to the value 0x4A, as the “load but do not execute” command. It also must load the address of a parameter block in ES:BX, and the address of the file system path name to the overlay in the DX register. Finally, the program calls interrupt 0x21 to switch control to MS-DOS and load the overlay.

Overlays from the Programmer’s Perspective

Programming overlays is quite straightforward in terms of the assembly language, as described above; but it also requires careful thought and discipline on the programmer’s part. The operating system will do nothing to prevent program failure or data corruption: these are all the responsibility of the programmer. There are ways to do overlaying well, and there are ways to do it poorly. Thankfully, overlay techniques had already been thoroughly worked out on mainframes for 25 years before programmers of the 1980’s implemented them once again in DOS.

A well-designed overlaid program can be thought of as a tree with multiple branches (see Figure 1). Each new allocation unit of the tree can coexist in memory with other units on its branch. In the figure, unit A can coexist with either unit B or unit D. However, unit B cannot coexist with unit D. If a call is made to a different branch (i.e. B calls D), some memory is unavoidably overwritten by loading whatever new sections are required for the new branch.

If any memory must be shared between exclusive branches, it should be stored in the closest unit in the tree that is a common root to the two branches. For example, unit B and unit D can share persistent data if it is stored in unit A.

The fundamental design principle of overlay programming is to avoid writing code that makes unnecessary calls between exclusively overlaid units. If a program constantly switches back and forth in this manner, the units will have to be repeatedly loaded from the hard disk, which can drastically slow the program’s execution. By optimizing the layout of the overlays, a programmer could often produce a solution with a slowdown that was practically imperceptible.

Summary

This paper presented a general overview of the MS-DOS operating system. Particular attention was given to DOS’s memory addressing and management, and to exposing the serious 640 KB conventional memory limitation MS-DOS suffers from due to its operation in 80x86 real mode. The technique of using overlays to circumvent this limitation was then discussed, both from the perspective of the operating system’s environment and from a programmer’s design considerations.

While today memory is cheap and abundant compared to the 1980’s, and operating systems are able to address much more memory than is typically found today in a PC (not to mention the addition of virtual memory to the mix, which has improved memory management drastically), we still find study of the technique of overlays to be instructive. There are still limited-memory systems in use, including Personal Digital Assistants (PDA’s) and other small-footprint devices. These ironically face some of the same challenges that were faced by mainframe programmers of the 1960’s and PC programmers of the 1980’s. This reaffirms the truth that the fundamental challenges of operating system design have never really changed; the same design concepts can be found useful over time in very diverse hardware systems.

Acronyms Used

BIOS
Basic Input/Output System

CPU
Central Processing Unit

DOS
Disk Operating System

FAT
File Allocation Table [file system]

GB
Gigabyte (230 bytes, approximately 1,000,000,000 bytes)

GUI
Graphical User Interface

IBM
International Business Machines, Inc.

IO
Input/Output

KB
Kilobyte (210 bytes, approximately 1,000 bytes)

MS-DOS
Microsoft DOS

MB
Megabyte (220 bytes, approximately 1,000,000 bytes)

OS
Operating System

PC
Personal Computer

PSP
Program Segment Prefix

RAM
Random Access Memory

ROM
Read Only Memory

TPA
Transient Program Area

Bibliography

Abel, Peter (1991). IBM PC Assembly Language and Programming. Englewood Cliffs, NJ: Prentice‑Hall, Inc. ISBN 0‑13‑448945‑4.

Dettmann, Terry (1988). DOS Programmer’s Reference. Carmel, IN: Que Corporation. ISBN 0‑88022‑327‑8.

Duncan, Ray (1986). Advanced MS-DOS Programming. Redmond, WA: Microsoft Press. ISBN 0‑914845-77-2.

Henderson, Harry et al. (1988). The Waite Group’s MS-DOS Papers. Indianapolis, IN: The Waite Group, Inc. ISBN 0‑672‑22594‑8.

Levine, John (2000). Linkers and Loaders. San Diego, CA: Academic Press. ISBN 1‑55860‑496‑0.

Norton, Peter (1985). Programmer’s Guide to the IBM PC. Redmond, WA: Microsoft Press. ISBN 0‑914845‑46‑2

 -- (1992). Programmer’s Problem Solver. New York, NY: Brady Publishing. ISBN 0‑13-720194‑X

D

E

C

B

A

Figure 1

D

E

C

B

A

PAGE
3

