SPECIAL CAPABILITIES

REPARSE POINTS

Windows 2000 has several special capabilities. Reparse points are one of those. They are a new feature found in the file system that returns an error when they are accessed. This data then tells the I/O manager what to do. Mount points are a type of Reparse point. Mount points allow you to create new volume, or partitions on another drive, transfer the old data to this new location, and then mount the new volume in the original place. This logical join of partitions is not found in any previous versions of the Microsoft Windows Operating Systems. What would happen in effect is that if a file system were filled, the structure of the directory would need to be changed to add more space. Since this data would still appear to be located in the same place, it would still be accessible by installed programs (Silberschatz, et al, 2003).

FAULT TOLERANCE

Another capability is for fault tolerance. Windows 2000 contains a fault-tolerant disk driver called FtDisk. It provides multiple ways to combine disk drives into one logical volume when installed. This can improve capacity, performance, or reliability. This volume set can be composed of up to 32 physical partitions (Solomon and Russinovich, 2000).

NO HARD REAL-TIME OPERATIONS

One capability that Windows 2000 does not offer is hard real-time operations. When a real-time thread becomes ready while a thread of lower priority is running, this lower-priority thread will be preempted. Even though this preemption gives the real-time thread preference, it does not guarantee that it will start to execute within any specific time limit.

MEMORY MANAGEMENT

VOLUME MANAGEMENT

A way that multiple disks can be combined is by concatenating them logically to form one large logical volume. A second way is by using a round-robin fashion to form a “stripe set”. This is when multiple physical partitions interleave their blocks for combination. The way this works is that the first 64KB of the logical volume are stored in the first physical partition and then the second 64KB of the logical volume are stored in the second physical partition and on and on. By using this method, the I/O bandwidth can be improved because all disks are able to transfer data in parallel. The best scheme, disk mirroring, is when a mirror set is comprised of two identically sized partitions on two separate disks. FtDisk then writes the data on both of these disks. If one of these two partitions fails, a copy has been safely stored. If both partitions are working properly, then the workload for each one can be cut in half because read requests can be split between these two mirrors.

VIRTUAL MEMORY

If a process is not able to store its code and recently used data in physical memory, some of this information is usually stored on a disk as virtual memory (Microsoft Corporation, 2002). The page size of this page-based management scheme is 4KB. This disk, where the information that is not in physical memory is kept, is called the paging file. Since this virtual manager uses 32-bit addresses, each process has a 4GB virtual address space. To allocate memory the manager uses two steps. For the first step, part of the process’ address space is “reserved”. Second, the allocation is “committed” by space being assigned in the paging file. If a process needs to free up its paging quota it can “uncommit” memory that is not in use.

A page can be in one of six states. These states are: valid, free, zeroed, standby, modified, or bad. When a page is valid, it is an active process. Free means that it is not being referenced in the page table entry. When a page is in standby it has been removed from the working set of a process, and modified means that it has been written. Lastly, a bad page is one that is not usable because an error has been detected. When a page fault happens, that page is placed onto the free list. Since Windows follows a “locality property” which states that when a page is used it is likely that the pages adjacent to it will be used soon, it automatically faults a few of the adjacent pages as well. If there are not any pages available on the free list, Windows 2000 takes pages from processes that are using more pages than their minimum amount requires.

WIN32 API
The WIN32 application programmer interface allows for three other ways of memory use besides virtual memory. They are memory-mapped files, heaps, and thread-local storage. For an application to reserve virtual memory, it must call VirtualAlloc and it must call Virtual free to release the memory. To secure some of its pages into physical memory a process can call VirtualLock. Memory mapping on the other hand allows two processes to share memory by both processes mapping the same file into their virtual memory. A heap is the next way that a program can use memory. It is just a part of reserved address space. It is synchronized so updates by multiple threads will not interfere with it. Lastly, thread-local storage allows threads to have its own copy of a static variable and global variables are allocated on a “per-thread basis” allowing two concurrent threads to execute a specific function concurrently.

DEALING WITH DEADLOCK

DEADLOCK

The Windows 2000 Operating System constantly has an array of threads that are waiting to do work. If one of these threads submits a task to another tread, but there are no free thread slots a deadlock will occur. COM (Component Object Model) is used for interprocess communication, which was developed specifically for Windows. It manipulates the data in an object. To make sure that deadlock does not occur, COM runs a message pump and waits for an outbound call to return which allows time for incoming calls to be processed. What COM uses to prevent deadlock is a series of nested method calls. When one method calls another, they are tracked with a “causality ID”. If an incoming call is from one of these causalities, it will be allowed to be serviced. If it is from an outside causality, it blocks its entrance so concurrent execution within the activity does not occur (Box, 1999).

REFERENCES

Box, Don (1999) “Microsoft Systems Journal: Windows 2000 Brings Significant Refinements to the COM(+) Programming Model”
http://www.ask.com/main/metaAnswer.asp?t=ai&s=a&MetaEngine=directhit&en=te&eo=4&o=0&frames=True&url=http%3A%2F%2Fwww%2Emicrosoft%2Ecom%2Fmsj%2F0599%2Fcomplusprog%2Fcomplusprog%2Ehtm&ac=6&adcat=tech&pt=Windows+2000+Brings+Significant+Refinements+to+the+COM%28%2B%29&dm=http%3A%2F%2Fwww%2Emicrosoft%2Ecom%2Fmsj%2F0599%2Fcomplusprog%2Fcomplusprog%2Ehtm&io=2&qid=8917DC852D8CE444A051D64F528A95E2&back=ask%3DHow%2Bdoes%2BWindows%2B2000%2Bdeal%2Bwith%2Bdeadlock%26o%3D0&ask=How+does+Windows+2000+deal+with+deadlock&dt=021203235158&amt=&pg=1&qsrc=0

David A. Solomon and Mark E. Russinovich(2000) “Inside the Microsoft Windows 2000” 3rd Ed.
http://www.microsoft.com/mspress/books/sampchap/4354.asp#SampleChapter
Microsoft Corporation(2002). “Windows 2002: How it works”

http://www.microsoft.com/windows2000/techinfo/howitworks/default.asp
Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne (2003). Operating System Concepts. New York, NY: John Wiley & Sons. 6th ed. ISBN 0-471-25060-0

