MINIX 1.0
CS 450: Operating Systems

905-955 Section

Fall 2002

Clint Morse

Joe Paetz

Theresa Sullivan

Angela Volk

Table of Contents
1. Introduction to MINIX ………………………………………………………
3

2. Process Management ……………………………………………………….
4

a. Overview

b. The Layers

c. Process Scheduling

d. The Process Table

e. Process Execution

f. Deadlock

3. Input / Output …………………………………………………………………
6

a. Overview

b. Interrupt Handlers

c. Device Drivers

d. Device-Independent Software

4. Memory Management ……………………………………………………….
7

5. File System …………………………………………………………………..
8

a. Overview

b. The Components

c. Directory Structure

d. File Protection

6. Conclusion …………………………………………………..………………
10

7. Bibliography ………………………………………………………..……….
11

Introduction

Professor Andrew S. Tanenbaum inspired the creation of MINIX, or mini-UNIX, when AT&T licensed its UNIX version 7. Prior to version 7 of UNIX, universities across the world used UNIX version 6 to teach their students the concepts of operating systems. With the newly instated licensing restrictions, UNIX source code became unavailable to the public. All 12,649 lines of source code making up MINIX 1.0 are completely original. Since UNIX could no longer be used as a teaching tool, MINIX became the new teaching aid to complement the operating systems theory taught in courses.

Tanenbaum’s goal in writing MINIX was to create an operating system that was more modular and understandable than UNIX, especially when reading the C code involved in implementing the system. In order for schools to use MINIX as a teaching tool, MINIX was originally designed to be able to run without a hard disk on a 4.77 MHz 8086 processor. Since its original release to the public, version 1.0, newer versions of MINIX have been released. Versions 1.5 and 2.0 have made the original version obsolete in usage, but version 1.0 will remain the main focus of our analysis of how the MINIX operating system works.

MINIX is designed to be a multi-user system. However, in MINIX 1.0 only one user can log onto a single machine at a time. Users have to wait there turn in order to log onto the system. In MINIX every user is assigned a user identification called uid. When a successful uid is entered then the shell for that user is loaded into memory. The system administrator gets a special uid called super-user. The super-user gets to violate most of the protection rules of MINIX, and therefore needs to be separate from the other users. MINIX is a multi-user system because UNIX 7.0 is a multi-user system, and MINIX was designed to be a clone of UNIX 7.0.

MINIX was designed to be a clone of UNIX 7.0. UNIX, obviously, uses a command-line interpreter (Tanenbaum 1987, p13). This interface has advantages and disadvantages. Obviously, a command-line interpreter is fast and efficient, but users have to memorize a large number of commands in order to navigate the system at all. However, MINIX was designed for a student of computer science, and any student of computer science should be able to memorize the necessary commands. Therefore, Tanenbaum chose the correct interface for his “teaching operating system.”

MINIX is broken up into four main sections of code: process management, input/output, memory management, and file system. Together, these four components make up the very basic necessities of the operating system, allowing MINIX to be relatively small in nature, easy to comprehend, and useful as a teaching tool for those wishing to learn about the subject.

Process Management

Overview

MINIX is a multi-layered system. That means that every process has a will fall into one of four distinct categories. The first layer is the process management layer. This layer catches all the interrupts and traps, saves and restores registers, and deals with message passing between all processes in any layer (Tanenbaum 1987, p87).

The Layers

The second layer contains the I/O processes. The first and second layers together form the kernel of MINIX. The reason that the I/O layer is part of the kernel is because some machines require that the kernel performs the I/O tasks. In order to keep MINIX as portable as possible, these machines have to be taken into account, and there fore, the I/O tasks need to be performed in the kernel (Tanenbaum 1987, p88).

The next layer is the server process layer. It contains only two processes, the Memory Manager, and the File System. These processes provide “useful services to the user processes,” and thus need to be put into there own separate layer (Tanenbaum 1987, p88).

The last layer is the user processes. These include the user shells, editors and compilers, as well as all the processes written by the user to run on the system (Tanenbaum 1987, p88).

Process Scheduling

Now that we know the overall design of MINIX we can start looking at the nuts and bolts that make MINIX work. MINIX is a multi-tasking operating system. MINIX uses a hybrid priority / round-robin scheduling algorithm in order to be multi-tasking. Every process is given one of three priorities and subsequently put at the end of one of three queues corresponding to the three priority levels. Then a process is chosen to execute based on its priority and its position in the queue. This is the priority scheduling algorithm part of MINIX. When a process is executing, it cannot exceed a predetermined time quanta though, before it is sent back into the priority queue. And that is the round-robin scheduling part of the MINIX scheduling algorithm (Tanenbaum 1987, p90).

The Process Table

The system needs to have a data structure that it associates with a process. In most operating systems there is a structure specifically called the process control block, however, in MINIX there is no data structure in called the Process Control Block, PCB. Instead each process is just an entry in a table. This table is just an array of data-structures. Each entry is a c struct called a proc, and we can tell what each process control block must contain by looking at the code for proc (Tanenbaum MINIX source line #750).

Each proc contains lots of information about the process. This information can be divided into three different categories. The first category can be described as the structures and variables that allow the process to be accessed. These variables and structures are: an array of registers, a pointer to the current memory address of the process’s stack, an array of pointers to the immediate children of the process, an array representing the programs physical location in memory, a pointer to the lowest legal stack value, and an int to represent the process id (Tanenbaum MINIX source line #750).

The next category can be defined as the time variables that the process needs to keep track of. These variables are used to keep track of: the amount of time the process has been in the system, the cumulative amount of time that the process has been executing, the cumulative amount of time that the process’s children have been in the system, the cumulative amount of time that children have executed (Tanenbaum MINIX source line #750).

The last set of structures and variables is all used so that the process can communicate with other processes. These structures and variables are: a pointer to the linked list of processes that are sending data, a pointer to the next proc wishing to send, a pointer to the message buffer, an int variable that stores the process id of the process that this process wants to receive data from, and a pointer to the next ready process (Tanenbaum MINIX source line #750).

Process Execution

The last important bit of information about processes has to deal with how they execute. MINIX processes use a single thread of control and a single program counter. Therefore, MINIX is a single-threaded operating system. The easiest way to implement this system is with user level, one-to-one threads, because this is the simplest threading strategy, and there only needs to be one thread per process (Tanenbaum & Woodhull 1997, p53).

Deadlock

Deadlock occurs when processes come to a stand still because the processes are all waiting for a device that is controlled by another device. For example, if process A has control of device 1 and it is waiting for device 2 to complete its process and process B has control of device 2 and it is waiting for device 1 to complete its process. This situation leaves both processes A and B in a constant wait state(Tanenbaum 1987, p122). There are four ways to solve or prevent this situation; ignore the problem, detection and recovery, prevention, or avoidance by resource allocation (Tanenbaum 1987, p127).

MINIX uses the first method to control deadlock. When MINIX 1.0 was written, there were very few external I/O devices. The only situation where a deadlock could occur would be the shared resources; these include I-nodes and process table slots. Avoiding these deadlocks is difficult and costly, therefore it is ignored. However, deadlock is avoided between the File system and the memory manager. This is done by controlling their methods of communication. A deadlock can occur when the memory manager tries to contact the file system but it is busy causing it to block the memory manager. Then, if the file system in return tried to contact the memory manager its communication would fail causing deadlock. MINIX avoids this type of deadlock by only allowing the file system to send responses to messages from the memory manager. This method of deadlock avoidance is effective in this system, but it is the only form of deadlock control in the OS. (Tanenbaum 1987, p139).

Input/Output

Overview

Making up roughly 30% of the source code for the MINIX operating system, the input/output (I/O) is significantly important, providing a way for the user to communicate with the hardware. In MINIX, the I/O system is broken up into distinct layers, each having specific functions to be responsible for running. More specifically, three layers exist between the user processes, which originally make the I/O calls and format the calls to the I/O, and the hardware, which is the final destination of the I/O calls; the location where the calls are operated. The three in-between layers in MINIX are as follows: interrupt handlers, device drivers, and device-independent software (Tanenbaum 1987, p122).

Interrupt Handlers

Interrupt handling in MINIX revolves around process abstraction; to keep the details of the interrupt process as simple as possible, until implementing all the technical details at the very center of the operating system. The code stored in the file named mpx88.s is the area in the kernel that handles the interrupts for the hardware. When the interrupt procedure begins, the first step is to save all the register values for the current process, storing them in a process table slot. A function called “interrupt” in the proc.c file is called to handle the sending of the message, created in interrupt procedures, and interact with the scheduler. There is no buffer system implemented to store messages if the message is not ready to be received, so checks are in place to make sure a task is ready to accept messages. The message created during the interrupt handling stage in the I/O system is sent to the device drivers (Tanenbaum 1987, p99-100).

Device Drivers

The purpose of a device driver is to receive requests from the user, through device-independent software, and to make sure that the request is carried out without a problem. The design of the device drivers in MINIX differs considerably from UNIX. As usual, UNIX was designed for efficiency, and MINIX strove to design a modular, easy to understand system. Device drivers are all processes that are stored together in the kernel, allowed to communicate with each other and the file system via message passing. The message passing technique is the same used throughout the operating system, and is not device driver specific. Stored in separate, single files, the device drivers interact in a standard manner. The advantage of storing the device driver files in with the kernel is to allow easier access to the data structures of the kernel. Each device driver is programmed to behave initially in most cases no matter what type of driver it may be. Necessary initialization is done only once, and starts when the system begins for the first time. When the device receives a message, the origination of the message is stored, and the appropriate procedure is called on to perform the necessary work. The device, when completed with its task, sends a message back to the origin of the message passed to it originally, and waits for future requests. A status code is used inside the main procedure of the I/O task to signal if something goes wrong, using a negative number to represent the error that occurred (Tanenbaum 1987, p135-138).

Device-Independent Software

The two main tasks performed by the device-independent software are providing an interface for software used by the user and performing functions common for the device drivers. The device-independent I/O software in MINIX is combined into one process with the file system. The following is a list of functions performed by the combined process, as far as the device-independent software is concerned:

· Uniform interfacing for the device drivers;

· Device renaming;

· Device protection;

· Providing a device-independent block size;

· Buffering;

· Storage allocation on block devices;

· Error reporting (Tanenbaum 1987, p119).

Memory Management

MINIX manages its memory by maintaining a sorted list of the holes in the memory block. Using this numerically sorted list, the memory request is placed in physical memory based on the first fit strategies. In first fit, the list is searched until the first area of memory is reached that is large enough to hold the process. Alternately, the list is composed of taken memory, not spaces in the physical memory; this is a reverse method of MINIX (Tanenbaum 1987, p226).

Tanenbaum, the author, chose not to use paging or segmentation based on a few assumptions. The first assumption is that the OS will only be used for a personal computer and it will not have a large amount of memory request. If only used on personal computers with a small amount of running processes, then there will be enough memory space to hold all of the processes with room left over (Tanenbaum 1987, p226).

 The MINIX programmer also assumes that personal computers do not have a hard disk (because this was true when the OS was written) and swapping on floppies would be very difficult. Another assumption is that the operating system would need to be ported with systems that did not have paging and segmentation. By not using paging or segmentation, it is easier to port the machines to those that do not have either memory management system (Tanenbaum 1987, p226).

The memory manager is not placed in the kernel; it is placed in the user space. By placing it in the user space, a system is set up to control message handling between the kernel and the memory manager. When the process is given a space in physical memory, it is set up to have the stack and the data grow towards each other within the process’ memory space. This method allows the stack to grow and the data to grow with out having limited space within the given physical memory space (Tanenbaum 1987, p228). The physical memory space is recorded onto the memory management table as clicks instead of bytes. Each memory space starts on a click and spans over a certain number of clicks. (Tanenbaum 1987, p231).

Files System Organization

Overview

The MINIX file system is responsible for mapping the logical file onto physical storage, which can include allocating and deallocating space for files, keeping track of disk blocks and free space, and providing file protection (Silberschatz 2003, p406; Tanenbaum 1987, p299).

The MINIX file system accepts a total of 29 different messages requesting it to do work – 27 are MINIX system calls and 2 are from other parts of MINIX. The file system loops while waiting for a message. When a message is received, the message type (READ, CHDIR, CHMOD, etc.) is used as an index to look up the pointer to the procedure in a table. The procedure is run, and when it is finished, it returns a status value indicating success or failure to the caller and returns to the looping state (Tanenbaum 1987, p299).

The Components

The MINIX file system is a self-contained C program similar to a network file server (except that it run locally). One advantage to this type of file system is that it can be run almost completely independent of MINIX or transferred to any computer with a C compiler to be used as a network file server. The file system can be stored on any block device, including floppies and hard disks. Regardless of the block device it is being stored on, the file system will always contain the same six components: a boot block, super block, I-node bit map, zone bit map, I-nodes, and blocks. The only thing that changes about these components depending on the block device is their relative size (Tanenbaum 1987, p299-300).

The most basic component of the file system is the block. Storing files in consecutive bites on the disk can lead to problems if the file becomes too large to fit into its allotted consecutive space (Tanenbaum 1987, p256). To solve this problem, MINIX uses blocks

to split the file up into manageable pieces that may or may not be contiguous. The

standard block and zone
 size in MINIX is 1K (Tanenbaum 1987, p300-302).

A level up from blocks is the I-node. Each I-node is associated with a single file (Tanenbaum 1987, p260). It contains information about the file, such as the owner, the file size, and the time modified. In MINIX, the first 7 disk block numbers are stored directly in the I-node. If a file has more than 7 blocks, the indirect field uses a free disk block to store pointers to the other disk blocks needed for the file. If there are still more blocks for the file, the double indirect field is used in the same manner the as the indirect field. With a standard block and zone size of 1K, the I-node can keep track of up to 64M (with 16-bit block numbers). When a file is opened, the files I-node is brought into the I-node table. The I-node table has a few fields the I-node itself does not have, most notably the counter field. The counter is incremented for each instance of the file that is open, and decremented each time an instance is closed. This allows MINIX to keep just one copy of the I-node in memory, and only write to the disk once (when the counter reaches 0) if the file has been modified (Tanenbaum 1987, p 304).

The boot block is the very first thing in the file system. The boot block is read into memory and jumped to when the computer is first turned on. The boot block is present even if the device the file system is stored on is not bootable (Tanenbaum 1987, p300).

The super-block contains all of the information needed to describe the layout and structure of the file system, including the number of I-nodes, maximum file size, and the number of I-node bit maps. When the MINIX system is booted, or when the file system is mounted, the super-block is read into the super-block table. The super-block table has some information not stored in the super-block on the disk, such as the originating device and an array that stores pointers to each entries bit map memory block (Tanenbaum 1987, p301).

The bit maps are also read into memory when the system is booted or when the file system is mounted. When a file is deleted, the block containing its I-node in the I-node bit map is found using a pointer array. When the block is found, the bit for the I-node is set to 1. When a file is created, the file system searches through bit map blocks until it finds a free I-node. A value of 0 is returned if no free I-nodes are found, which is why I-node 0 is never used (Tanenbaum 1987, p302-303).

Directory Structure

The directory structure of MINIX is very similar to that of Unix. There is a root directory, under which all other directories and files are stored. A directory has a file containing 16-byte entries. The first 2 bytes are the I-node number, and the remaining bytes are the file name. Paths are looked up one component at a time until the desired path is found (Tanenbaum 1987, p 306).

File Protection

MINIX also uses a capability list similar to that of Unix to protect files. Each file and directory has read, write, and execute (rwx) bits. The rwx bits are set for the owner, the owner’s group, and others. This type of protection scheme allows the owner to set exact permissions for each file and directory (Tanenbaum 1987, p329).

Conclusion

In conclusion, MINIX is a multi-user, multi-tasking, single-threaded operating system. The ostrich algorithm of ignorance is used for deadlock handling. In MINIX, the I/O is broken up into three distinct layers: interrupt handlers, device drivers, device-independent software. The memory is managed by maintaining a sorted list of the holes in the physical memory block. The MINIX file system is a self-contained C program resembling a network file server. The file system consists of six parts: boot block, super block, I-node bit map, zone bit-map, I-nodes, and blocks. The directory structure and file protection are very similar to that of Unix.

Bibliography

Gagne, Galvin, and Silberschatz (2003). Operating System Concepts, Sixth Edition. New York, NY: John Wiley & Sons, Inc. ISBN 0-471-25060-0.

Tanenbaum, Andrew S. (1987). Operating Systems: Design and Implementation. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 0-13-637406-9

Tanenbaum, Andy (1996). “MINIX Information Sheet”. URL: http://www.cs.vu.nl/~ast/minix.html
Tanenbaum, Andrew S, Woodhull, Albert S (1997). Second Edition: Operating Systems:
Design and Implementation. Upper Saddle River, NJ: Prentice Hall.

� MINIX also uses zones, which allow blocks belonging to one file to be stored on the same cylinder. Zones also allow the file system to compensate for files larger than 65M by increasing the zone size instead of the block size, which reduces wasted disk bandwidth and main memory. However, zones also introduce a security problem. With a zone size larger than the block size, if a file takes up only one block, it is still allotted an entire zone. The unused portion of the zone contains garbage left over from the previous file. When the file grows past the size of one block, attempts to read the file will allow to user to read the previous contents of the zone. Since the standard distribution of MINIX has a block size of 1K and a zone size of 1K, the rest of this paper will deal only with blocks (Tanenbaum 1987, p303-304)

PAGE
2

