Linux Operating System Overview

CS 450 Operating Systems

Section 2

Fall 2002

C. Blane Adcock

Bryan Knehr

Kevin Estep

Jason Niesz

Table of Contents

Multiprocessing

2
Hardware Platforms

2
Command Language(Shell Script)

2

Graphical User Interface

3
User Levels and Multitasking

4
Process Control Block

5

Synchronization

5

CPU Scheduling Algorithm

6
Deadlock Detection and Resolution

6
Approach to Memory Management

7

Page Replacement Algorithm

8

File System Structure

8
File System

8
Bibliography

10

The Linux Operating System began with the MINIX OS being modified by Linus Benidict Torvalds. The resulting Kernel and OS took it’s name, Linux, from Linus. The first Linux, Version 0.1, was released in 1991. Currently there are too many versions available to list, but the latest version Red Hat Linux version is 8.0

Multiprocessing

Linux allows for multiprocessing through Symmetric-Multiprocessing. (SMP) The multiprocessing capabilities of Linux began with the 2.0 version and have become more robust with subsequent versions. In addition to two processors residing in one machine it is also possible for a group of machines each running Linux to be interconnected by a network to form a parallel-processing cluster. Currently Power PC, X86 Systems (i.e. Dual Celerons) and Sun Sparc Hardware platforms are supported by Linux SMP. There is no out-of-the-box SMP kernel, the user / system administrator must construct their own, but this is a relatively small task requiring only a few modifications to the main Makefile.

Processes are not specifically tied to a particular processor, but they tend to be handled by the same processor throughout their life on the system. Processes and kernel-threads are distributed among processors, however user-space threads are not.

Hardware Platforms

Redhat Linux 8.0 only supports processors based on x86 architecture. The following is a list of compatible processors for running Redhat Linux 8.0. The AMD x86 processors that are compatible are the K5, K6, K6 II, K6 III, Athlon, Athlon (Thunderbird), and Duron. The compatible Intel line of processors consist of the Pentium, Pentium Pro, Pentium II, Celeron, Pentium II Xeon, Pentium III, Pentium III Xeon, and the Pentium IV. Less popular processors such as the Cyrix MediaGX, Cyrix 6x86, Cyrix MII, and the IDT WinChip are also compatible.

Even though the Redhat Linux 8.0 distribution only supports the x86 based processor family, the Linux kernel Redhat is based on (2.4.x) supports different processor architectures. “These days it runs on at least the Compaq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 and CRIS architectures.” However, by using the GNU C compiler, Linux can be easily compiled on and ported to most general 32-bit or 64-bit architectures that support paged memory management.

 Command Language(Shell Script)

Operating systems need to receive commands and then take some type of action based on that command. If operating systems couldn’t receive or understand a defined number of commands then they wouldn’t be very useful. “Many commands are given to the operating system by control statements.” A shell reads and interprets control statements and its main function is to get the next command statement and execute it. (Silberschatz 2002)

Linux understands several commands from the user such as ls, cd, mkdir, netstat, tcpdump, and many more. For example, when I typed the ls command in my home directory “/home/mainx”.

$ ls

eggdrop mail download incoming

ircd java

$

The Linux command prompt ($) means that it is waiting for the user to input a command. In the example above, it is the login shell (bash). When I typed ls, it caused the keyboard driver to recognize that characters have been typed. “The keyboard driver then passes them to the shell, which processes that command by looking for an executable image of the same name. It finds that image in /bin/ls. Kernel services are called to pull the ls executable image into virtual memory and start executing it. The ls image makes calls to the file subsystem of the kernel to find out what files are available.” When the information is located, ls will write that information out and the video driver displays it on the screen. (http://www.redhat.com/mirrors/LDP/LDP/tlk/basics/sw.html)

Linux can also take commands followed by separators, which directs the output of one command to the next. For example, if we want to display only files that contain “rc” in them we can type “ls | grep rc”. The separator | directs the output from the ls to the grep utility, which sorts out and displays all lines with “rc” in them. There are many more separators that Linux supports, and you can use several separators on one command.

Linux supports shell scripts, which are like batch files in the MS-DOS operating system. This allows for creation of a text file that has a series of Linux commands. You can later execute this file and it will perform all the commands specified in the text file. This can be useful for automating tasks, creating your own commands, displaying input from user file on screen, and saving time.

Graphical User Interface

Red Hat Linux 8.0 lets you use the KDE or GNOME desktop environments. The GNOME desktop environment is geared towards users, because it provides an easy to use GUI environment and an application framework that helps new users of Linux. KDE on the other hand is a powerful environment that is geared towards software development. Both of these environments use “XFree86”, which is an open-source version of the “X Windows System”. “XFree86, the product, provides a client/server interface between display hardware (the mouse, keyboard, and video displays) and the desktop environment while also providing both the windowing infrastructure and a standardized application interface (API). XFree86 is platform-independent, network-transparent and extensible.” Since XFree86 is open-source, you are encouraged to modify and customize it to meet your needs. (http://xfree86.org/#whatis, 2002)

The client/server interface provided by Xfee86 is based off of the X Protocol. In this approach, the client is device independent because it only communicates with the X Server. The client is much like an application separated from the X Server. The client is what is displayed on the X Server. The X Server is device dependent because it uses device drives to communicate with the graphical processing unit of the computer and the underlying hardware, which then outputs the results on a display. “X Server further provides a common windowing system by specifying both a device dependent and an independent layer, and basing the protocol on an asynchronous network protocol for communication between an X Client and X Server.” The device independent layer is used to communicate with the client(s). Since the client(s) only need to be concerned about communicating with the X Server, it supports true distributed processing. Clients can be run on the local machine or one or more remote machines, which display output on the X Server. The benefit of running clients on several remote computers is that it allows distributed processing, taking the load off of the machine running the X server. The abstraction of hardware and operating system from the client makes development much easier and allows for high portability. Another advantage to this approach is that applications do not suffer a performance penalty.You can see a graphical diagram of the X Protocol [image: image1.png]below.

User Levels and Multitasking

Linux has both single-user and multi-user modes of operation. It is a multitasking system that supports both user-level and kernel-level thread types.

And, although Linux itself supports multithreading, still some Linux sub libraries do not, which could cause these libraries to crash. This is being worked on, however and developers are trying to get these inconsistencies to be worked out soon.

Process Control Block

Process images in Linux normally contain four basic elements: program text, which contains instructions from the process that need to be executed; program data, which may consist of local and global variables; stacks, which normally consist of a user and kernel stack; and the process control block.

In Linux, a process has six attributes; owner’s ID, process name, process ID, process state, process ID of the parent process, and total time the process has been in the system.

On Linux and most Unix-based operating systems, processes have a parent-child relationship where any process that is created by another process becomes a ‘child’ of that process, which then is associated as a ‘parent’ process. This is beneficial if the parent process is terminated, then all child processes can then be terminated automatically without explicit instruction from the system

Access of processes to system resources are granted or denied by predetermined parameters that can check system ID, owners ID, and other parameters. These parameters are usually determined by the owner’s of the resource.

Synchronization

There are four synchronization mechanisms used in the Linux Operating System, Wait Queues, Semaphores, Mutual Exclusion Locks (Mutexes) and Condition Variables.

The Unix Operating System uses Signals for inter-process communication. This is easily done since any process on the system can send a signal to any other process. The Linux Kernel uses a different implementation. Whenever a process on the system is waiting for an event to occur it places itself on a Wait Queue for that event. Any number of processes may place themselves on a Wait Queue for a particular event, allowing multiple processes to wait for a single event. After a process places itself on a Wait Queue and notifies the scheduler that it is no longer available for execution. Once a Process completes, it wakes up every Process on its’ associated Wait Queue, who then must go through the scheduler for it’s turn to be executed.

Linux also uses Counting Semaphores. Two advantages to using Counting Semaphores are: Multiple independent processes can share large numbers of semaphores and operations on multiple semaphores can be accomplished atomically. The Linux system synchronizes processes using semaphores with the Wait Queue mechanism.

Mutexes are similar to Semaphores; they are used to protect access to shared resources or data. Mutexes have two states, Locked and Unlocked. Threads initialize a Mutex in the Unlocked state, but it does not have ‘Ownership” of the Mutex until it locks it. If a thread tries to lock a Mutex it does not own (Locked by another thread) it will wait until that thread unlocks the Mutex, at which time it will perform it’s Lock operation and become the Mutexe’s owner.

Condition Variables are used in conjunction with Mutexes to grant multiple threads access to shared data. The usual example of this behavior is when one thread is producing data (Producer) that is needed by other threads (Consumers). The Consumers wait for a broadcast signal to come from the Producer, at which time they will awaken and become owners of the associated Mutex.

CPU Scheduling Algorithm

Linux uses preemptive scheduling with a simple priority based scheduling algorithm to determine which process on the system is to run. There are two types of processes in Linux, “normal” and “real time”. Real time process can be designated either first in first out (FIFO) or round robin (RR). All real time processes are given priority over normal processes. Upon invocation of the scheduler it begins to go through the run queue and calculate a “goodness” value for each process, starting with the previous task. The process with the highest goodness value is then selected to run. For a process to be selected it must be ready to run, meaning it cannot be waiting for anything, such as an input. The goodness value is based on a number of different things. First if the process is marked SCHED_FIFO or SCHED_RR (real time processes) 1000 is added to the goodness value. This is to ensure that the all the real time process have priority over non-real time processes. Added to the 1000 is the value of the task’s priority field. All normal tasks’ (marked SCHED_OTHER) goodness value is based on four factors. The first is the task counter. If its value is zero a goodness value of zero is returned. If it is not zero then the value of the counter and the task’s priority value are added together to form the goodness value. Following this two bonuses are assessed. A one point bonus for tasks that share memory maps and a 15 point bonus for processes that last ran on the current processor. The bonuses are then added to the previously calculated goodness value to form the overall goodness value for the process. If all goodness values are zero the scheduler has the counter values for each process recalculated and then recalculates all the goodness values. The problem with this algorithm is that it recalculates each process’s goodness value every time the scheduler is invoked. This is clearly an O(n) operation where n is the number of tasks on the run queue, which can become very CPU expensive if n gets to be a large number. Studies done by IBM have shown that “as much as 30% of total CPU time in the system can be spent is the scheduler when the number of tasks is high.” (Molloy et al., 1999)

Deadlock Detection and Resolution

Linux has a two-pronged approach to Deadlock detection and resolution. First of these is the nmi_watchdog command. This command enables a built-in deadlock detector. With this detector enabled, the Kernel executes Non Maskable Interrupts periodically to detect if the CPU (Or CPU’s for SMP) has locked up. Debugging messages are then displayed, as they are needed.

The second prong is due to the open-source nature of the operating system there are several message boards and discussion groups online dealing with Linux issues. As Linux enthusiasts discover sources of deadlock conditions, they post messages concerning the issues and ask for help –or even post the fix they have found themselves.

Approach to memory management:

Linux uses the virtual to physical address mapping scheme. All of these addresses are virtual addresses and not physical addresses. These virtual addresses are converted into physical addresses by the processor based on information held in a set of tables maintained by the operating system. Linux uses fixed size pages, which vary depending on the platform. Virtual addresses are made up of two parts, an offset and a virtual page frame number. The processor must always extract the physical offset and virtual page frame number from each virtual address. In order for the processor to access the location, the virtual page frame number is translated into a physical page number. The processor will then be able to access the location at the correct offset, into that physical page. This is accomplished by using a page table.

The page table consists of a valid flag, physical page frame number, and access control information. The valid flag indicates if a page table entry is valid. Access control information describes how the page may be used. The hardware platform that runs Linux must provide translation macros that allow the kernel to traverse page tables for a particular process. This hides the format of the page table entries and how they are arranged.

[image: image2.png]
Page Replacement Algorithm:

The page replacement algorithm that Linux uses is called the Buddy algorithm. This algorithm is effective in allocating and deallocating blocks of pages. “The page allocation code attempts to allocate a block of one or more physical pages. Pages are allocated in blocks, which are powers of 2 in size. That means that it can allocate a block 1 page, 2 pages, 4 pages and so on. So long as there are enough free pages in the system to grant this request the allocation code will search the free_area for a block of pages of the size requested. Each element of the free_area has a map of the allocated and free blocks of pages for that sized block. The allocation algorithm first searches for blocks of pages of the size requested. It follows the chain of free pages that is queued on the list element of the free_area data structure. If no blocks of pages of the requested size are free, blocks of the next size (which is twice that of the size requested) are looked for. This process continues until all of the free_area has been searched or until a block of pages has been found. If the block of pages found is larger than that requested it must be broken down until there is a block of the right size. Because the blocks are each a power of 2 pages big then this breaking down process is easy as you simply break the blocks in half. The free blocks are queued on the appropriate queue and the allocated block of pages is returned to the caller.” (http://www.redhat.com, 2002)

File system structure

The Linux file system is structured like most other modern systems with a hierarchal directory structure. Every directory in the system is a sub directory of the root directory, symbolized by a “/.” This forms a sort of inverted tree structure with the root at the top and every file, directory, and subdirectory below it. Because of this tree structure a parent-child relationship is created between directories and their subdirectories and files.

File System

The ext2 file system has, up until lately, been the most popular file system for Linux. It has been proven as a stable, robust file system for the Linux environment. However, as with any file system developed, it was sure to have its share of shortcomings. Among these problems is that upon an unexpected shutdown due to power failure or system failure, the file system must perform a file system integrity check. This check can take a long time to perform, and uses a large amount of system resources. In addition, since the ext2 file system has been used since the time of much smaller hard drives, these check now take much longer for hard drives in the hundreds of Gigabyte range.

With the need for a more efficient way of recovering disk stability after a power outage or crash, the ext3 journaling file system was developed. Instead of performing the expensive integrity check, all recent changes to the file system are referenced in a journal. This journal is then checked after a system failure to process its contents and return the system back to its previous state.

 Another enhancement present in ext3 is the customization of the data protection that is present on a given system. These options and a brief description are as follows:

1. The first mode, “data=writeback”, is the fastest option for the journaling file system. However, it allows some data integrity to be lost. In effect, it provides the same data integrity levels from the ext2 file system, but it doesn’t perform the file system integrity check during the boot procedure. The major advantage is that is may result in an increase in speed for some systems.

2. The second mode, which is the default mode for Linux systems, is “data=ordered”. This option provides assurance that there will be no data inconsistencies between data and file system.

3. The third and last mode, “data=journal”, is perhaps the slowest option for data integrity, because it necessitates the largest journal to achieve acceptable speed. Because of the longer journal, it takes longer to recover, but may result in improved performance for some database applications.

Ext3 is also backward compatible with ext2 in the sense that any system capable of reading files from an ext2 file system will be able to access files on the newer ext3 systems.

Bibliography

Author unknown. (22 Nov 2002) “File System Basics.” URL: http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/admin-primer/s1-storage-basics.html
Johnson, Michael K. (2001) “Red Hat’s New Journaling File System: ext3.” URL: http://www.redhat.com/support/wpapers/redhat/ext3/
Newmarch, Jan. (29 August 1995) “Process Management.” URL: http://jan.netcomp.monash.edu.au/OS/18_2.html
Sarwar, Syed Mansoor, Robert Koretsky, and Syed Aqeel Sarwar. Linux: The Textbook. Boston: Addison Wesley, (2002).

Author(s) unknown. (December 1997) “Processes and Process Context.” URL: http://www.linuxgazette.com/issue23/flower/page1.html
Walton, Sean. (19 Sep 1996) “Linux Threads Frequently Asked Questions (FAQ)”. URL: http://linas.org/linux/threads-faq.html
Silberschatz, A., Galvin, P.B., Gagne, G. (2002), Operating System Concepts Sixth Edition New York, NY: John Wiley & Sons, Inc.

Molloy, S., Honeyman, P., Bryant, R.,(1999). “Scalable Linux Scheduling.” URL:

http://www.research.ibm.com/acas/projects/99molloy.pdf

Molloy, S., Honeyman, P., (2001). “Scalable Linux Scheduling.” URL: http://www.citi.umich.edu/techreports/reports/cti-tr-01-7.pdf

Author(s) Unknown (2002) “eCosTM Reference Manual” URL: http://sources.redhat.com/ecos/docs-1.1/ref/ecos-ref/synchronization.html
Author(s) Unknown (2002)” Red Hat Linux 8.0: The Official Red Hat Linux x86 Installation Guide” URL: http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/install-guide/ch-bootopts.html
Author(s) Unknown (2002) “The Linux Kernel Archives” URL: http://www.kernel.org

Author(s) Unknown (2002) “What’s Linux Shell?” URL: http://www.freeos.com/guides/lsst/kershell.htm#shell

Author(s) Unknown (2002) “U What is XFree86?” URL: http://xfree86.org/#whatis

Author(s) Unknown (2002) “The X Protocol” URL: http://www.x.org/X11_protocol.htm
WORK BREAKDOWN by Project Objectives

1. Uniprocessor only, or support for Multiprocessor Systems as well? Distributed system? Blane
2. Special Capabilities such as soft/hard Real- Time, High- Availability/Fault –Tolerant? Bryan
3. Single- User or Multi-User? Multi-Tasking? Single Threaded processes or Multi-Threaded? Thread Types (user-level, kernel-level, one-to-one, one-to-many, many-to-many) Kevin
4. Hardware Platforms Jason
5. Command Language(Shell Script); Graphical User Interface? Jason
6. Detailed structure of the Process Control Block -Kevin
7. OS-supplies and compiler-supplied synchronization mechanisms: binary semaphores, counting semaphores, monitors etc. Blane
8. Levels of scheduling present: Long-Term, Mid-Term, Short-Term? Scheduling algorithms used Bryan
9. Approach to dealing with deadlock: Deadlock Prevention, Deadlock Avoidance, Deadlock detection and resolution or do nothing. Blane
10. Approach to memory management: Single-Job-At-a-Time. Partitioned with single size partitions, multiple size partitions (Single or multiple queues?) dynamic partitions, segmented, paged or segmented and paged? Page replacement algorithms used? Jason
11. File system access methods, directory structure, protection mechanisms Kevin
12. Physical organization of file system and algorithms for disk scheduling. Bryan
PAGE
11

_1100282167

