
Table of Contents

1) Introduction
2

2) Hardware Platforms
2

3) Graphical User Interface
2

4) Layered System Architecture
3

a) Compatibility

b) Development

c) Application Services

d) Core Services

e) Kernel Environment

5) Multi-User
6

6) Threads
6

7) Memory Management
8

a) Virtual Addressing

b) Demand Paging

c) Preemptive Swapping

d) Mapping

e) Memory Protection

8) Directory Structure
10

9) Bibliography

Introduction

 The OS X operating system represents a major step for Apple and even the entire computer industry. It successfully brings the power and stability of Unix together with the simple, useable user interface of Macs. Although it is a dramatically big step for Apple from its previous OS 9, it seems the fruits of the labor made it all worth it. OS X although relatively new and wet behind the ears has made its way onto many satisfied users desktops and servers. For this reason it is worth taking a closer look.

Hardware Platforms

Mac OSX is based on NeXTSTEP, an operating system created by one of Steve Jobs’ companies after he left Apple. NeXTSTEP ran on NeXT, Sun, HP Unix, and Intel platforms. OSX runs on Apple hardware primarily. This includes the iBook, Powerbook, iMac, and PowerMac. They run on Motorola G3 and G4 central processing units, which are slightly slower than Intel’s units. Darwin is the kernel of the operating system. It is open source and can be downloaded and run effectively on an Intel machine, if the source is complied on the Intel machine. Darwin will also be updated as changes are made to OSX. It doesn’t include any graphics found in OSX, but this allows the basic functionality of OSX to spread away from only Apple hardware. OSX also supports USB, Firewire, Airport, and Velocity Engine.

Graphical User Interface

Mac OSX’s graphical user interface is named Aqua. It is full of “eye candy;” including “translucent gel look”, and detailed icons. It runs on top of Quartz, a third generation display layer developed and first showed in 1999. A third generation display layer, as defined by Siracusa, not only provides independent drawing modes but also stays aware of the shapes after they have been drawn on the screen. Quartz uses Adobe PDF format for its internal graphics representation, this provides better color management and it’s open standard and free. Quartz also includes several other multimedia libraries including: OpenGL, Quick, and QuickTime. Aqua uses huge icons, 128 x 128 pixels, in the dock. The dock is the row of icons on the bottom of the screen; the size of these can also be changed. Aqua also uses the genie effect to open dock icons to full screen. The image in the toolbar expands from the top down looking like a genie emerging from the lamp. Dialog boxes also have the ability to attach themselves to windows opposed to Windows where the dialog box is a separate entity. This allows a window that caused a dialog box to pop up to be minimized then later maximized without fear of forgetting which window the box belonged to.

Layer System Architecture

One of OS X’s most useful and advance characteristics is the multitude of different application types that can be developed and used on OS X. Classic Mac, Java, and BSD are just some of the many applications that can be run on this robust system. In order to achieve this feat, a complex level of libraries where created and organized in a layer structure which is best represented by Apple’s picture (Figure 1).

Figure 1:

[image: image1.png]
In order to understand this diagram better it is best to examine each row in more detail. The first set of layers is referred to as the execution layers; these include the four blue layers and the BSD shell. It is this ro of environments that the applications normally deal directly with. Within these there is a split between compatibility and development.

Compatibility

The purpose of the compatibility layers is to provide an environment to support programs from previous OS’s. This backwards compatibility was added to make migration to this new operating system easier.

Classic compatibility provides a means for running programs developed for previous Mac operation systems, OS 8 and OS 9. This layer is unique in the respect that it has connections to the three different layers below it. Programs that run in this environment though must be previously compiled on an OS 8 or 9 systems that contain the necessary libraries. As Apple puts it, these libraries are hardwired in OS X and compiling of this type of code is not possible.

BSD is an equally unique environment layer. It too attempts to provide backward compatibility to previously written programs. These programs that were developed on BSD then interact directly with the BSD portion of the kernel as indicated in the diagram.

Development

Next are the development types of application environments. These are the libraries that were created so that applications specific to OS X can be developed. As the diagram shows all of these environments depend directly on the Applications Services layer and have no interactions with any other layers.

Carbon was previously used in OS 9 development. Apple suggests about 70 percent of the function calls were carried over from the original libraries. In addition to these some new calls were created that were specific to OS X.

Cocoa is an advance set of object-oriented libraries that provided specific calls to Java and C programs. These libraries were specifically developed for creating GUIs.

The Java environment provides a pure application of the Sun Java Development Kit. With this there is also provided a virtual machine to run the Java applications. Apple claims Java programs run substantially faster on OS X since the libraries are integrated directly into the operating system, almost to the point of being just as fast as any other type of application.

Application Services

This layer provides mainly graphical user interface creation services to the execution environments. Two different libraries called QuickDraw and Quartz provide the majority of these services. Some of this layers responsibilities are providing for screen rendering, printing, event handling, and cursor management just to name a few.

Core Services

The next layer is the Core Services layer. This layer’s responsibilities are to provide basic programmatic structures for application development. Some examples are strings, flow structures, and collections. Also program related functions that deal with threads, virtual memory, and resources are provided at this level.

Kernel Environment

The last and most fundamental level is the Kernel Environment. This layer provides all of the essential operating system functions to OS X. Multi-user access, preemptive multitasking, symmetric multiprocessing, file system access, networking, and more are all services provided by this environment.

Multi-User

In a Mac OS X system users have the ability to customize their working environment. Users have the ability to select a desktop pattern, their preferred language, the applications to start up at boot-time, and a number of other preferences. Whenever they log in to their account, all of their choices are restored.

A user's personalized environment only affects their environment, meaning that other users can log in to the same computer and have an entirely different set of preferences define their computing environment. Mac OS X enforces secure boundaries between user's data and programs. Each account is password-protected and users cannot execute applications, edit or even read documents in another user's folder without the owner's permission.

Threads

A thread is an execution context within a process. A thread shares virtual address space and other task-wide resources with other threads of the process. Threads are scheduled to run preemptively or, with symmetric multiprocessing, concurrently. Threading models built on top of the kernel’s can, however, use various synchronization mechanisms to present cooperative threading behavior.

Mac OS X provides five different threading APIs. Mach threads represent the lowest level threading on the system. POSIX threads (pthreads) are layered on top of Mach threads. Cocoa threads (NSThreads) are layered directly on top of pthreads. Carbon Multiprocessing (MP) tasks are layered on top of pthreads. Carbon Thread Manager cooperative threads are also layered on top of pthreads. Ultimately all threads are layered on top of Mach threads. There is a one-to-one mapping between Mach threads and pthreads, and there is a many-to-one mapping between the other threads and pthreads.
Carbon implements a private threading abstraction layer known as Thread Support (TS) which is layered on top of pthreads. Both MP tasks and Thread Manager threads are currently layered on top of TS threads, (Apple).

The figure 2 below shows a simple example of the Mac OS X thread layering hierarchy.

Figure 2:

[image: image2.png]
Mach maintains the register state of its threads and schedules them preemptively in relation to one another. pthreads is one of the standard threading models in the industry and it implements preemptively scheduled threads. Carbon multiprocessing tasks implements preemptively scheduled threads on Carbon. Thread Manager implements cooperatively scheduled threads on Carbon, and NSThreads implement preemptively scheduled threads for use in Cocoa applications, (Apple).

When dealing with multithreaded applications you want to use threads that are appropriate to your application environment. Typically you would want to use pthreads, and you want to avoid creating and managing Mach threads.

Memory Management

The memory management scheme used by OS X is a significant upgrade of that used by OS 9. With OS 9, a fixed-partition scheme was used. This caused processes to be given either too much or too little memory. Often, a process would be allocated enough memory to execute all the code associated with it, even error-handling algorithms that were most likely to remain unused, resulting in wasted memory space. Another problem with the fixed-partition scheme was that often a process's user stack would expand beyond the allocated memory, without any ability to increase it's size. These two problems would result in a large number of "out of memory" messages being generated.

OS X has corrected these problems with the use of dynamic partitioning. Since OS X is simply a Macintosh GUI on top of a UNIX shell, the way OS X performs dynamic partitioning is very similar to the way that most UNIX systems perform it. Using dynamic partitioning, applications don't require fixed and distinctive memory addresses. The operating system allocates memory to each process as it sees fit, and releases memory not currently in use by a process. It does this by using a number of important functions:

Virtual addressing

Under this scheme, each physical address is first mapped to either a 4 or 8 kb block of memory. These blocks are known as pages, and are indexed in the page table. Processes are allocated pages of virtual memory pointed to by virtual addresses. Each virtual address has two parts: the virtual page number and the offset. To obtain the physical address, the virtual page number is applied to the page table and combined with the offset to acquire the physical page number, which is again combined with the offset to get the physical address.

Virtual addressing allows for having more virtual memory than physical memory. This is because any virtual memory not currently in use by a process can be stored in secondary storage, and swapped into memory when it is needed by a process.

Demand paging

Using this scheme, each process is only allocated RAM as it is needed. The operating system loads only the introductory parts of a process into RAM, and pages-in any other parts as the process references them. This contributes to the increased efficiency in OS X, as it only allocated enough memory as a process needs, without any excess.

Preemptive swapping

With this system, instead of waiting for a process to reference a changed page before copying it to disk, the contents are copied to disk during times when the disk is idle. This minimizes the occurence of slow-down during swap out.

Mapping

Using this scheme, a process does not have to access secondary storage every time it needs to access a file. Instead, a file is mapped to a segment of the process's virtual address space, and the process can use this in the same way as it would use the file. This allows multiple processes to use the same file, as each can designate a part of its own virtual address space to correspond to the file, and multiple processes do not have to try to access the same file on a disk. This system is faster and more efficient than standard file access methods.

Memory protection

Each process is assigned its own unique memory address space separate from all other processes. This prevents any process from corrupting another process's data or instructions. Also, the user memory space is kept separate from the kernel memory space, and only the kernel can switch from accessing the user area to accessin the system area. A segmentation violation is generated when this memory protection is violated. Using memory protection, if one process crashes it does not affect other processes on the system.
Directory Structure

The directory structure of OS X is very similar to that used by most UNIX systems. At the top of the directory structure is the root directory, designated by a '/'. Users with root access to alter or delete any file they wish, whether it belongs to the system or another user, and thus by default there is no root account on the system. With a root account enabled, the system is very vulnerable to user error or attack from outside the computer. An Administrator account is provided for installing software and updating the operating system, and should be used in place of a root account.

There are three primary types of file defined by OS X: plain files, directory files, and device files. Plain files are those with information most likely to be utilized by the user. Any file the user creates and any program file are examples of plain files. Directory files contain a list of file names and inode numbers of files contained in that directory. An inode is a structure that holds all information regarding the file except the name. Device files include such things as cdroms, terminals, serial ports, and sound cards. There are two types of device file: block and character. Block device files use buffered I/O, and character device files use unbuffered.

Bibliography

1. http://www.uwsg.ui.edu/UAU/memory
2. Seth Noble. “Memory Management” http://www.narda.net/~sbnoble/tips/memory.html
3. Remedy Corporation. “How Does Unix Memory Management Work”, http://supportweb.remedy.com/supportweb/Documentation/PDF/technotes/doc1371.pdf
4. Apple Computer, Inc. (2002). “Mac OS X” URL: http://developer.apple.com/macosx/

Apple-OSX-by-Jason-Losco-Jon-Soper-Shaun-O'Neill-&-Eric-Bartel-2002-FALL
Shaun ONeill-Threads, Multitasking Slides
Eric Bartel-Layered Structure Slides
Jason Losco-GUI and Hardware Platform Slides
Jonathan Soper-Memory Management and File Directory Slides

Each person also wrote the sections of the paper that correspond with the slides they submitted.
Page 2

