PAGE
11

Table of Contents

1Introduction

1Scheduling

1Thread Priorities

4Multiprocessor Scheduling

4Thread States

5Memory Management

5Virtual Memory Management

6Protecting Memory

6Shared Memory and Mapped Files

6Locking Memory

7Page Directories

7File Management

8Threads

8Kernel-Level Threads

8User-Level Threads

8Mutual Exclusion and Synchronization

9Kernel Synchronization

9Executive Synchronization

10Summary

11Bibliography

Introduction

Windows 2000 is designed to: provide a true 32-bit, preemptive, reentrant, virtual memory operating system, run on multiple hardware architectures and platforms, run and scale well on SMP systems, be a great distributed computing platform, both as a network client and as a server, run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications, meet government requirements for POSIX 1003.1 compliance, meet government and industry requirements for operating system security, and be easily adaptable to the global market by supporting Unicode. It is designed to be portable through the use of the HAL, or Hardware Abstraction Layer. According to Richard Stallings, the HAL: “isolates the operating system from platform-specific hardware differences.” (87). As of April 2001, Windows 2000 has only been implemented for the Intel x86 architecture.

The OS did use some state-of-the-art concepts in its construction, because it is written largely with an Object Oriented design in mind. Windows 2000 also uses a relatively new concept in its implementation, a hybrid microkernel.

Commercially and economically Windows 2000 has been successful. As of February 2001, a year after its introduction, over one million licenses for the Server version had been sold according to news.com.

The parts of the operating system that were done well are the hybrid kernel design and the APIs that allow applications to be compatible with newer versions of the operating system. However, there has been criticism of the weak remote administration facilities built into the operating system when compared to the available features of a UNIX operating system. Critics point to the important role of remote administration in an operating system that use used for servers.

Scheduling

Windows 2000 implements a priority-driven preemptive scheduling system.

Thread Priorities

Levels

Internally, Windows 2000 uses 32 priority levels, ranging from 0 to 31. These values are broken up into three groups, namely sixteen real-time levels (16-31), fifteen variable levels (1-15), and one system level (0), reserved for the zero page thread. The Win32 API groups these 31 priority levels into six separate classes, namely Real-time (22-26), High (11-15), Above-normal (8-12), Normal (6-10), Below-normal (4-8), and Idle (2-6). These classes are then broken down into relative priorities: Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle. A thread’s priority is based upon both the process’ priority and the thread’s relative priority. When threads are created they generally inherit their process base priority, which defaults to the value at the middle of each process priority range (4, 6, 8, 10, 13, or 24).

In Windows 2000, a process has one priority level, while a thread receives two values: the current priority and the base priority.

Priority Boosts

The priority of a thread can be boosted in the following cases (Solomon 354):

· Upon completion of an I/O operation

· After waiting on executive events or semaphores

· After threads in the foreground process complete a wait operation

· When GUI threads wake up because of windowing activity

· When a thread that’s ready to run hasn’t been running for some time, as in the event of CPU starvation

When a thread in the dynamic priority range (0-15) is released from a wait state, the scheduler may temporarily boost the thread’s priority to give it a chance to complete execution based on the new data the thread acquired. These boosts range from a single priority level for the completion of an I/O event up to eight priority levels following the completion of a sound (Solomon 360).

Boosts applied to threads returning from a wait state receive a boost of one, but to favor interactive applications a boost of 2 is applied to threads returning from a wait state if that thread owns a window. A boost is also applied to foreground threads to improve the perceived responsiveness of interactive applications. I/O requests to devices that warrant better responsiveness have higher boost values.

The priority boost is always applied to a thread’s base priority, never to its current priority. After a boost is applied, the thread will run for one quantum at the elevated priority level, after which it decays one priority level and runs another quantum, continuing until it has degraded to its base priority level. A thread with an elevated priority level may still be preempted by another thread with a higher priority level, but the interrupted thread will complete its time slice before returning to its base level. A threads priority level will never be boosted into the Real-Time priority range.

Real-Time Priority

Windows 2000 maintains 15 priority levels titled real-time. These levels are normally reserved for kernel-mode system threads. The difference between threads running at the real-time level and those running at other priority levels is that threads in the real-time range have their thread quantum reset if they are preempted. While Windows 2000 uses a set of priorities called real-time, Windows 2000 does not provide real-time operating system facilities, such as guaranteed interrupt latency.

Scheduling Queues

Windows 2000 maintains a queue for each priority level. The queues contain threads that are in the ready state and are waiting to be scheduled for execution. To speed up the selection of which thread to run or preempt, Windows 2000 maintains a 32-bit bitmask called the ready summary, which indicates at least one thread in the ready queue for that particular priority level ready to run (Solomon 341). Windows 2000 also maintains a second bitmask, the idle summary, in which each bit that is set represents an idle processor (Solomon 354).

Windows 2000 handles wait queues in an interesting way. When a thread enters a wait state on one or more objects (valid objects include an event, a semaphore, a mutex, and I/O completion port, a process, a thread, etc), that thread performs a synchronization of its dispatcher state with the object in question. A thread cannot resume its execution until the dispatcher state of the object in question returns from a nonsignaled state to the signaled state. A thread can wait on more than one object at a time, and can also specify that its wait should be canceled if it hasn’t ended within a certain amount of time. Whenever the kernel sets a particular object to the signaled state, it checks to see whether any threads are waiting on the object. If they are, the kernel releases one or more of the threads from their waiting state so that they can continue execution. When a thread returns from the wait state 1 quantum unit is deducted from the thread’s remaining quantum so that I/O bound threads are not unfairly favored.

Quantum

A quantum is defined as the amount of time a thread gets to run before Windows 2000 checks to see if another thread at the same priority should get to run. When a thread has run for its entire allotted quantum, Windows 2000 checks if there is another thread at the same priority level that is in the ready queue. If there is, the currently executing thread is moved to the back of its priority level’s queue and the next thread in the ready queue is dispatched to the processor for execution.

Context Switching

In Windows 2000, a thread’s context and the procedure for context switching can vary depending on the processor’s architecture. The saving and reloading of this data is made possible by using a kernel-mode stack. Typically, however, a context switch involves saving and reloading the following data:

· Program counter (PC)

· Processor status register

· Other register contents

· User and kernel stack pointers

· Pointer to the thread’s address space in which it runs

CPU Starvation

Windows 2000 maintains a system thread called the balance set manager. Once per second, this thread executes and scans 16 of the ready queues for any threads that have been in the ready state for longer than 300 clock ticks. The next second, it scans the remaining queues, continuing where it stopped the previous pass. When the balance set manager finds a thread that has been waiting for execution for longer than 300 clocks ticks, it will boost that threads priority to the highest non-real-time level (15) and sets its quantum to double the normal time. If the thread has not completed execution after two complete quantums its current priority level is set to the base priority level. The balance set manager will only boost 10 threads per execution pass.

Zero Page Thread

When there is no runnable thread for a CPU, Windows 2000 will dispatch the zero page thread. The zero page thread is reported as running at priority 0, though it really does not have a priority at all. The zero page thread polls for deferred interrupt processing. The zero page thread performs the following functions:

· Enables and disables interrupts, allowing any pending interrupts to be delivered

· Checks for any deferred procedure calls pending on any processor and delivers them, if necessary

· Checks whether a thread has been selected to run next on the CPU and, if applicable, dispatches the thread

· Performs checks for power management functions

Multiprocessor Scheduling

Windows 2000 pads each thread with two CPU numbers stored within the thread block: Ideal processor and last processor. Ideal processor is chosen randomly from the number of CPUs the system has and remains static unless specifically changed with a system call. These values drastically reduce the amount of swapping of secondary cache data that occurs when a thread is moved from one CPU to another in its next quantum.

When selecting a thread for execution, Windows 2000 attempts to perform the following steps:

1. Schedule the thread on an idle processor in order of ideal, last, and current CPU

2. Schedule the thread on any idle processor

3. Preempt a thread currently running on a processor in order of ideal, last, and current CPU

Processor affinity

Each thread contains a processor affinity mask that specifies the processors a thread is permitted to run. By default, a thread can run on any processor. The affinity mask is used to allow tightly coupled processes to better communicate together. Windows 2000 won’t move a running thread that could run on a different CPU in order to run a thread with an affinity for the first CPU.

Thread States

Windows 2000 maintains seven thread states:

· Ready – Threads waiting to execute

· Standby – A thread that has been selected to run next on a particular processor

· Running – An executing thread

· Waiting – A thread waiting on a particular event to occur

· Transition – A thread that is ready for execution but its kernel stack is paged out of memory

· Terminated – A thread that finishes execution

· Initialized – Used when a thread is being created

State Transitions

In Windows 2000, a thread can change its state due to a variety of different events.

· Voluntary Switch – This occurs when a thread enters a wait state on an object.

· Preemption – a higher-priority thread that has become ready to run can preempt a thread. This can happen when a higher-priority thread has completed a wait or a thread’s priority has been increased.

· End of Quantum – The execution of a thread will be stopped if its quantum has elapsed. If the thread has not completed execution it will be moved to the end of the ready queue.

· Termination – This occurs when a thread has completed execution or its parent’s process is terminated.

Memory Management

The memory manager in Windows 2000 provides services for virtual memory management, shared memory between processes, memory mapped files, locking memory, and protecting memory. The memory manager is intended to operate over a variety of platforms and utilize page sizes between 4 Kbytes to 64 Kbytes.

Virtual Memory Management

Each user process in Windows 2000 has a separate 32-bit address space, allowing 4 gigabytes of memory per process. However, 2 gigabytes of this address space is reserved for the operating system so that the available virtual address space for each user is 2 gigabytes (Stallings 380).

Pages in a process address are allocated into one of three states: free, reserved, or committed. Free pages are pages that are not currently being used by the process. A reserved page is a way for a thread to set aside a range of virtual addresses that may be needed in the future. These reservations do not count against the user addressable space allotted to the process. Committed pages have been set aside in the memory manager’s page file (Stallings 381). Applications first reserve address space and then commit pages in that address space. Because the addresses are merely reserved, actual access of them is not possible and will result in an access violation.

Pages are written to disk by first being moved from the process working set to the modified list and finally to the disk. The handling of reserving and committing memory is efficient in that memory usage is reduced because committed pages are reserved until needed. It is also a reasonably fast and inexpensive operation under Windows 2000 because it does not consume any committed pages (Soloman 389-391).

Protecting Memory

Memory protection is provided to prevent a user processes from accidentally or purposely accessing the address space of another process or the operating system itself. There are four main ways in which memory is protected in Windows 2000. First, all system wide data structures and memory pools used by kernel-mode system components can be accessed only while in kernel mode, not user mode. Should user-mode threads attempt to access a kernel-mode system component, the memory manager will report this as an access violation. Second, each process has a separate, private address space, which cannot be accessed by any thread that belongs to another process. This assures that threads running in one process cannot access a page belonging to another process. The only exceptions are if the memory is shared or if another process has virtual memory read or write access to the process object. Third, all processes are also supported by some form of hardware-controlled memory protection. These access restrictions include read/write, read-only, no-access, execute, execute read, execute read/write, write/copy, execute write/copy, and guard. Lastly, shared memory objects have standard access-control lists that are checked when a process attempts to access a shared memory area. This serves to limit shared memory access to only processes with the proper rights. In order to create the shared memory object, the thread must have at least read access to the underlying file object or the operation will fail (Solomon 397).

Shared Memory and Mapped Files

Shared memory can be defined as “memory that is visible to more than one process or that is present in more than one process virtual address space” (Soloman 393). Each process maintains its own private memory areas where it can store its own data, but the program instructions and unmodified data pages can be shared without harm because of hardware memory protections. This type of sharing occurs automatically because the code pages in executable images are mapped as execute-only and the writable pages are mapped as copy-on-write. Implementing shared memory involves the use of shared objects. These objects represent a block of memory that two or more processes can share and can be mapped to the paging file or to another file on a disk. When a process maps a copy-on-write view of a section object that contains read/write pages, the memory manager suspends making a copy of the pages until the page is written to. Therefore, copy-on-write page protection is used to conserve physical memory (Solomon 394).

Locking Memory

There are two ways that pages can be locked in memory. Once a page is locked, it remains in memory until unlocked. The first method of locking a page in memory is for a device driver to call a kernel-mode function to lock the page in memory. There is no limit enforced on the number of pages a driver can lock in memory, although a driver cannot lock more pages than the resident available page count will allow. The second way to lock pages in memory is through the VirtualLock function. This function can be called by an application to lock pages in their process working set. “The number of pages a process can lock cannot exceed its minimum working set size minus eight pages” (Solomon 392). If all the threads in the process are in a wait state, the memory manager is free to remove such pages from the working set if memory demands dictate. This can actually disrupt performance because when a thread wakes up to run, the memory manager must first read in all the locked pages before the thread executes. For this reason, it is generally a good idea to let the memory manager decide which pages remain in physical memory (Solomon 392).

Page Directories

Each process has a single page directory that the memory manager creates to map the location of all page tables for that process. The physical address of the process page directory is stored in the kernel process block and is also mapped virtually. All executable code running in kernel mode uses to virtual memory addresses, not physical ones. The Central Processing Unit can determine the location of a page because a register inside the CPU contains the physical address of the page directory. The page directory is composed of page directory entries or PDEs. Each PDE is 4 bytes long and describes the state and location of all the possible page tables for that process.

Before referencing a byte within a page using an offset, the CPU first needs to be able to find the page that contains the desired byte of data. To do so, the operating system constructs another page of memory, containing the mapping information needed to find the desired page. This page of mapping information is referred to as a page table. Because Windows 2000 provides a private address space for each process, each process has its own set of process page tables to map that private address space. However, the page tables that describe the system space are shared among all processes (Solomon 433- 435).

File Management
“A file management system is the set of system software that provides services to users and applications in the user of files” (Stallings 527). The only way that a user or application is able to access a file is through the file management system.

Windows 2000 includes support for these file system formats: NTFS, CDFS, UDF, FAT12, FAT16, and FAT32. CDFS or CD-ROM file system is the read-only formatting standard for CD-ROM media. UDF file system allows support for DVD media and CD-RW media. Windows 2000 supports the FAT file system primarily to enable upgrades from other versions of Microsoft Windows and for compatibility with other operating systems, and as a floppy disks (Solomon 689).

The file system designed for Windows NT/2000 is NTFS. It is designed to meet high-end requirements for workstations and servers. Examples of such high-end applications are client/server applications, resource intensive engineering and scientific applications, and network applications for large corporate systems (Stallings 554). NTFS uses 64-bit cluster indexes, however, Windows 2000 limits the size of an NTFS volume to those addressable using 32-bit clusters. Notable features of NTFS are recoverability, file and directory security, disk quotas, file compression, directory-based symbolic links, and encryption.

NTFS uses a simple but powerful approach to organize information into four regions on a disk volume. The layout of an NTFS volume is depicted in the figure below.

	Partition boot sector
	Master file table
	System files
	File area

The first few sectors on any volume are occupied by the partition boot sector, which contains information about the volume layout, the file system structures, and the boot information and code. The master file table contains information about the files and folders on the NTFS volume and information about available unallocated space. The system files region follows the master file table and is usually approximately 1 megabyte in length. It contains files such as the log file and the attribute definition table. The log file is a list of transaction steps used for NTFS recoverability. The attribute definition table “defines the attribute types supported on this volume and indicates whether they can be indexed and whether they can be recovered during a system recovery operation” (Stallings 558).

Threads

Windows 2000 supports both user-level and kernel-level threads. Several types of kernel-level threads are available within Windows 2000.

Kernel-Level Threads

There are several types of kernel-level threads available in Windows 2000. A user mode kernel-level thread is created and runs in user mode and can be preempted by the scheduler.

System worker threads are created by other threads and only exist to do work for other threads (Solomon 165). There are different types of system worker threads. Delayed worker threads are not time critical and their stack can be paged out. Critical worker threads have time critical work items and their stacks always reside in memory. Hypercritical worker threads always have their stack in main memory, and are used to free terminated threads.

Kernel mode system threads have all the attributes of a user mode thread, but can only be run in kernel mode. Objects running in kernel mode can only create this type of thread. A kernel mode system thread has no user process address space and must allocate all its storage needs dynamically from the heap; this is different than a user mode system thread (Solomon 76).

User-Level Threads

A user-level thread or fiber is created as a normal thread, and then converted to a fiber. The scheduler does not preemptively schedule different fibers. Instead, a fiber must be switched to from another fiber in the process. The system can preempt the process controlling the fiber suspending the execution of the fiber as stated in the Windows Platform SDK documentation.

Mutual Exclusion and Synchronization

Different methods of mutual exclusion and synchronization are employed inside and outside of the kernel of Windows 2000. Within the kernel, much of the mutual exclusion is done using spinlocks. The objects providing mutual exclusion and synchronization outside the kernel rely on services provided by the kernel.

Kernel Synchronization

Synchronization in the kernel of Windows 2000 guarantees that only one processor can be executing in a critical section. To accomplish this, several methods are employed within the kernel. One way of enforcing mutual exclusion and synchronization within the kernel is by disabling certain interrupts. A different method, spinlocks, is used to protect the core data structures of the kernel (Solomon 157).

Some areas where mutual exclusion and synchronization are needed within the kernel on a single processor machine are dealt with by modifying how interrupts are handled. When a critical section dealing with data structures that do not constitute the core of the operating system are entered on a single processor machine, interrupt handlers that use the same resource that the critical section provides are masked so that these interrupts will not execute (Solomon 154).

Another way mutual exclusion is dealt with which is better suited to multiple processors is the use of a spinlock. A spinlock works by providing a global data structure in the kernel. Before entering a critical section, the kernel must acquire the spinlock associated with the critical section. If the spinlock is not available, the executing code employs busy waiting until the resource becomes available. When finished executing the critical section, the kernel will release the spinlock (Solomon 155).

To improve on the performance of spinlocks, a queue is employed. When a process makes a request for the spinlock, and the spinlock has already been acquired the request is placed on a queue. When the request can be fulfilled, a flag in the processor is set (Solomon 157). A benefit of this is that FIFO order is enforced for requests for the spinlock.

Executive Synchronization

The methods of mutual exclusion and synchronization are different outside the kernel. Instead, executive objects use dispatcher objects. Examples of these objects are mutexes, semaphores, events, and waitable timers (Stallings 291). To use these objects, a thread will issue a wait on one of these objects. While waiting on a dispatcher object, the thread is placed into a suspended state until the dispatcher object enters a signaled state (Solomon 160).

Types of Dispatcher Objects

· Mutex – This creates a section of code that can only be entered by a thread that posses the mutex. When the mutex is released, the mutex is passed to a waiting thread.

· Semaphore – This limits the number of times a resource can be used. A semaphore reaches a signaled state when its count drops to zero; when this happens, all waiting threads are released.

· Event – This can be used to tell a waiting thread that a specified event has happened. To do this, a wait is issued on an event and when the event occurs, and when an event is set, the waiting threads will be released.

· Waitable timer – This creates a timer object that will release its threads after a specified time interval has elapsed or when a specified time is reached.

Summary

Windows 2000 and its successors will continue to be very successful in the market place. It provides for both user and kernel processor modes, and scales from one to thirty two CPUs using SMP. Both user-mode and kernel-mode threads are supported by Windows 2000. A wide variety of synchronization mechanisms to provide mutual exclusion and synchronization, including mutexes, semaphores, events, and timers, exist to support multithreaded applications. Support for large amounts of memory is built in with a file system that can support the growing capacity of storage devices. The preemptive nature of Windows 2000 allows for it to be able to handle a wide variety of situations and applications from a workstation to a large server.

Bibliography

Foley, Mary Jo (2001). “Windows 2000 sales figures only tell part of the story.” URL: http://news.cnet.com/news/0-1003-201-4745235-0.html.

Microsoft Corporation (2001). “About Process and Threads.” URL: http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/winbase/
prothred_0n03.htm.

Solomon, David and Russinovich, Mark (2000). Inside Windows 2000. Redmond, WA: Microsoft Press. ISBN 0-7356-1021-5.

Stallings, Richard (2001). Operating Systems: Internals and Design Principles. Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 0-13-031999-6.

An Overview of Windows 2000

CS 351: Operating Systems
Spring 2001
Section 1

Michael Blinn
Ben Hejl
Jane McHugh
Matthew VanMater

Standby

Running

Ready

Transition

Waiting

Terminated

Pick to Run

Switch

Resource�Available

Unblock/Resume�Resource Available

Preempted

Block/Suspend

Unblock�Resource Not Available

Terminate

Figure 1: Thread State Transitions (Stallings 183)

