PAGE

The VMS Operating System

CS 351: Operating Systems

Spring 2001

Section 1

Chad Cruys

Joshua Krug

William Menke

Matt Stehle

Kenneth Ward

TABLE OF CONTENTS

11. OVERVIEW

32. THREADS

43. Synchronization Facilities

54. File System

75. Memory Management

96. Deadlock

107. Scheduling

11REFERENCES

1. OVERVIEW

OpenVMS, developed by Digital, which was later bought by Compaq, is an enterprise server operating system designed for mission and business critical applications. Financial, telecommunications, manufacturing, and healthcare institutions use OpenVMS for data storage and transportation. A new design and marketing strategy of OpenVMS is to provide integration of VMS and Windows NT. The OpenVMS marketing points provided by Compaq’s web site harp on the operating systems reliability, security and speed. Outside sources backup claims of VMS’s outstanding security and reliability but stop short of identifying speed as an advantage of VMS. Many sources indicate speed as a short fall of VMS. There are many different server applications available on VMS including HTTP, FTP, various email, GOPHER, and database services. OpenVMS is designed to run on VAX and Alpha processors only, there are no Intel implementations available.

OpenVMS set the bar for reliability and security. The systems are virtually uninterruptible, providing security from denial-of-service attacks, hot-swappable hardware, and the ability to run multiple instances of the operating system on the same machine. Password security is unmatched by UNIX or Microsoft. Microsoft recruited many of its NT developers from the VMS division of Digital but they failed to create as stable and secure operating system as VMS. The reliability of VMS has made it the choice of many companies as their mission critical server.

Compaq claims that OpenVMS had a very successful year in 2000 in which Compaq had $800 million in growth. Their biggest customer acquisition was Verizon in 2000, adding to an impressive list of clients. Compaq reports that 66% of fund transfers between banks take place on systems running VMS. They say 90% of CPU manufacturers use VMS to run their assembly lines. A large portion of stock transfers and many cellular phone billing services run on VMS systems. VMS is the top rated healthcare operating system for real-time, mission critical computing. By partnering with Microsoft to develop NT and VMS integrated solutions, OpenVMS seems to continue to play a major role in enterprise information systems.

Many companies sing praises of VMS’s reliability and security in their implementations. The consolidation of servers into one VMS system allows the total cost of ownership to be much lower to VMS systems as compared to other systems. The security and reliability of VMS is helping it become a major competitor in the new e-commerce industry. Many companies have found the advantages of VMS to be well suited to their extranet, intranet, and information storage needs.

 The process state structure for VMS involves a process priority queue where processes are ranked in priority from 0 to 31 where 16-31 is a high priority real-time process and 0-15 is a normal process. Processes states are suspended, executable, running, or waiting. An executable process would be similar to Starling’s ready state. Normal processes are moved up in the queue if they are critical to the operating environment. The Alpha systems running VMS have a register called the processor status long word (PSL), this register contains information about the process. The information contained includes the current access mode, the current interrupt priority level (IPL), the stack alignment, and several reserved fields. The interrupt priority word contains a ranking at which one process may interrupt another. A device cannot interrupt a processor if the processor is currently executing at an interrupt priority level equal to or greater than the interrupt priority level of the device's interrupt service routine. The access mode is the level at which the operating system must protect and constrain the process’s ability to manipulate the system. There are four access modes: kernel (mode 0), executive (mode 1), supervisor (mode 2), and user (mode 3). These attributes allow the system to prioritize processes in the queue for processing.

2. THREADS

OpenVMS uses multiple processors. On top of that, it is a symmetric multiprocessing (SMP) operating system. This means that all of its processors perform operations at the same time.

OpenVMS uses configurations of SMP that consist of multiple CPUs executing code from a single memory space shared amongst them. OpenVMS SMP prioritizes its processes, and selects a CPU where it will run.

OpenVMS includes a library of routines that allow the user to create multiple threads of execution, called DECthreads. DECthreads provide for concurrent processing across all CPUs by allowing a multithreaded application to have a thread executing on every CPU. This multithreading allows for I/O activity to overlap computation activity.

On OpenVMS VAX, the basic unit of execution is the process, and in OpenVMS Alpha they’re called kernel threads. Whatever the name, the equivalent process consists of an individual address space, registers, and code. OpenVMS VAX allows for up to 8,192 processes per system, where OpenVMS Alpha has a maximum of 16,384 kernel threads.

Since OpenVMS utilizes priorities in its threads, real-time processes can be assigned higher priorities to ensure they run when ready to execute. Real-time processes are scheduled preemptively, meaning they are given to the processor as soon as they’re ready to execute, unless there is a higher priority process waiting.

OpenVMS also provides for applications that consist of multiple cooperating processes. For example, shared memory sections are provided on a single processor, permitting multiple processes to access the shared space concurrently. Common event flags are provided to allow simple synchronization. There are many more facilities as well.

3. Synchronization Facilities

The VMS operating system handles synchronization through facilities known as locks. This locking system provides the needed access regulation for shared address spaces and shared I/O resources. The lock method allows for mutual exclusion of resources so more than one process cannot have access to a single resource at a time. For simple synchronization, common event flags are used.

The VMS operating system has what is called a “lock manager.” This facilitates a better way of handling enqueue/dequeue operations regarding locks that are multileveled. This technique of locking also allows for better use of asynchronous system traps (ASTs), and enqueued and dequeued values. The lock manager also distributes its services to systems in a cluster. For example, this allows it to be used in both systems by the record management services (RMS) and extended QIO processor (XQP) components. The lock manager services can also be used directly by the application programs themselves.

Resources are shared between applications in the OpenVMS Cluster system. The use of these resources is coordinated between the running programs. For instance, when data is being updated, the access to the shared resources is synchronized. This inhibits other applications in the cluster from gaining access to the shared resource at that time. The system coordination is what maintains and guarantees data integrity in the system when multiple updates are executed at once.

Synchronization is used with multithreaded applications as well. The VMS operating system uses what is known as DECthreads. DECthreads allows the user to make multiple threads to be executed in an address space. The DECthreads allow for concurrent processing on all processors in the system. They do this by having a thread from a multithreaded application running on each processor in the system. In this situation, elements such as condition variables and mutexes are used for synchronization. Mutexes are used for mutual exclusion. These items help control the coordinated access to the system resources.

4. File System

The file system in VMS was designed to be a vital part of the operating system. It was considered to be the key link between the hardware and software teams in the development of the operating system. It is also classified as a timesharing file system. The VMS file system makes every effort possible to separate itself from all I/O operations. It is mainly involved in the initial opening operation of the I/O and in updating the virtual-to-logical map.

The VMS operating system supports a disk structure known as Files-11 On-Disk Structure (ODS). There are several versions of the ODS structure implemented throughout the various versions of the VMS operating system. The Files-11 disk structures are CD-ROM volume and file structures or on-disk structures. Files-11 is the hierarchical organization of the files. This includes the files, the data from the files, and the directories that need accessed to get to the files. OpenVMS supports this structure and uses random access to files on disk or the CD-ROM. VMS only allows read access to CD-ROMs, but allows read and write access to disks.

The on-disk structures have different levels, including levels 1, 2, and 5. Level 5 ODS is only available starting with OpenVMS version 7.2 and up, but ODS-1 and ODS-2 have been around for quite a while. In the later versions of VMS, Extended File Specifications are supported. Table 1 shows a comparison of the different on-disk structures that OpenVMS uses.

Table 1. Comparison of ODS-1, ODS-2, and ODS-5
	Characteristic
	ODS-1 (VAX only)
	ODS-2
	ODS-5

	File names
	9.3
	39.39
	238 bytes, including the dot. For Unicode, that is 119 characters including the dot.

	Character set
	Uppercase alphanumeric
	Uppercase alphanumeric plus hyphen (-), dollar sign ($), and underscore (_)
	ISO Latin-1, Unicode

	File versions
	32,767 limit; version limits are not supported
	32,767 limit; version limits are supported.
	32,767 limit; version limits are supported.

	Directories
	No hierarchies of directories and subdirectories; directory entries are not ordered 1
	Alpha: 255 2
VAX: 8 (with rooted logical, 16)
	Alpha: 255
VAX: 8 (with rooted logical, 16)

	System disk
	Cannot be an ODS-1 volume
	Can be an ODS-2 volume
	Cannot be an ODS-5 volume

	OpenVMS Cluster access
	Local access only; files cannot be shared across a cluster
	Files can be shared across a cluster
	Files can be shared across a cluster. However, only computers running OpenVMS Version 7.2--EFT1 or later can mount ODS-5 disks. VAX computers running Version 7.2--EFT1 or later can see only files with ODS-2 style names.

	Disk
	Unprotected objects
	Protected objects
	Protected objects

	Disk quotas
	Not supported
	Supported
	Supported

	Multivolume files and volume sets
	Not supported
	Supported
	Supported

	Placement control
	Not supported
	Supported
	Supported

	Caches
	No caching of file header blocks, file identification slots, or extent entries
	Caching of file header blocks, file identification slots, and extent entries
	Caching of file header blocks, file identification slots, and extent entries

	Clustered
	Not supported
	Supported
	Supported

5. Memory Management

Memory management for the VAX/VMS operating system is accomplished using virtual memory addressing. The purpose of memory management is to move data and programs between physical discs and memory. A computer running VMS can hold an immense amount of data. Since not all programs presently running can reside in memory at one time, algorithms determine what remains in memory. VMS handles this in a relatively standard way.

The two devices to move data between hard disc and memory are the pager and swapper. The swapper is a process that controls the number of processes in memory. The swapper attempts to keep as many processes in memory as possible, while staying within certain resource bounds. Higher priority processes are run before lower priority processes. There are 32 priority levels in a VAX/VMS system: the first 16 are real-time programs, while the last 16 are for processes that are not time-critical, (http://www.compaq.com/info/SP2501/sp2501pf.pdf). The purpose of the pager is to load pages into memory as needed. While the pager executes in the context of each process, the swapper is a system-wide separate process, (Bynon, 2-17).

The pager responds to page faults and manages their replacement. When a process is created, only immediately necessary pages are moved into memory. A page fault occurs when the program requires a new page to be loaded into memory. The virtual address to locate the next page is stored in the system. VMS uses a process-local page replacement policy, where individual processes must remove their own page from memory before bringing another in. VMS must make a decision to decide which page the new page replaces. For this, VMS chooses the method of “first in, first out”. In other words, the first page brought in becomes the first to be replaced. A page cache contains the removed pages, where they can be recovered with little loss, (http://www.cs.berkeley.edu/~gribble/osprelims/F95/summaries/vaxvms/vaxvms.html).

Modern VMS systems use a 32-bit address to store physical data. This means that four gigabytes of data can be stored on a VMS-run machine. Of the four gigabytes, 3.5 GB are used for physical memory and .5 GB for I/O and adapter space (http://www.compaq.com/info/SP2501/sp2501pf.pdf). The first two bits of the data address determine the segment where the information resides. The next 21 bits represent the page number. The last nine indicate where the data exists within the page, called the offset. Because nine bits locate the data within each page, there are 512 bits per page (2^9=512), (http://www.deas.harvard.edu/courses/cs261/readings/levy-1982.html).

Virtual Addressing

	2 bits
	21 bits
	9 bits

	Segment
	Page
	Offset

The VMS file management system has several important data structures. Each file is made of an ordered set of virtual blocks. Files are identified to the system by their file identifier, a 48-bit binary value. The file ID includes the file number, the file sequence number, the relative volume number, and the file number extension. The file number locates the file within the physical data. While an individual file number can be used repeatedly, a different file sequence number is assigned to each file. This prevents the user from accessing a deleted file. The relative volume number locates the volume where the file resides within the volume set. The file number extension contains the last eight of the 24 bits that make up the file number, (McCoy, 16-18)

The volume index file contains the header of each file. The file header includes a header area, an ident area, a map area, an access control list area, a reserved area, and end checksum. The header area contains file and sequence numbers, and it validates the header information. The ident area stores identification and accounting data such as the name of the file, and the revision, creation, expiration, and backup dates for the file. The map area plots the virtual blocks of the file to logical blocks. The access control list area contains a list of users allowed to access the file, (McCoy, 18-37)

There are two contexts for process data structures: hardware and software. The hardware context includes general-purpose machine registers, four stack pointers, and the processor status longword. The software data structures comprise of the process quotas, privileges, user identification code, username, process ID, and the process’ scheduling priority. VMS uses two identification methods to distinguish processes: the user identification code and the process identification. The user identification code “identifies a process in terms of access to system objects, such as files and devices.” (Bynon 2.8). The process identification identifies active processes, (Bynon 2.8).

A process has three areas for its virtual address space description. The program and control page tables are stored in the process header. The program region includes the native mode image, run-time library and the debugger. The control region has the user stack, pre-process message sections, image I/O segments among other data pages. The system page table contains the drivers, interrupt stack, the virtual address map and several other important data items, (Bynon, 2.5-7)

6. Deadlock

Deadlock is defined as permanent blocking of multiple processes. They can come from two situations. They can either be competing for certain system resources or attempting to communicate with each other.

To prevent this from happening, VMS uses a Lock Manager to detect deadlocks. Once detected, the system uses a TRANSACTION TIMEOUT subclause in the application definition to get rid of the deadlock. If the transaction has not completed within the number of seconds allotted by TRANSACTION TIMEOUT, the transaction services will abort the process.

7. Scheduling

Since each processor can only process one thing at a time, operating systems must schedule processes. This means that the scheduler must tell the processes in what order they will be processed in. The VMS scheduler does so based on three criteria: process time, process priority, and process state.

Scheduling based on time is used with round-robin with preemption. All the processes of equal priority are put in a queue. Each process then runs a certain amount of time and is then taken off the queue and put in the rear so that the next process can be run. The amount of time is based on a parameter set in the system, called QUANTUM. The value of QUANTUM is measured in 10-millisecond intervals. When each process is ready for execution, the value of QUANTUM is placed on in the quantum-remaining field of the process header. As the process is running, every 10 milliseconds the VMS timer interrupt decrements the value. When it hits zero, the process is switched out and a new process is scheduled.

Perhaps the most important criteria that the VMS scheduler uses to determine which process is to be executed next is the process priority. Processes with higher priorities will execute before a process with a lower priority. VMS uses priorities in the range of 0 to 31, with 31 being the highest possible priority. There are two different levels of priorities in VMS, 0 to 15 are for normal processes while 16 to 31 are for real-time processes. This means that a real-time process will always have precedence over a normal level process.

If a process needs a resource, such as the case is with I/O-bound processes, then the VMS scheduler can give a priority boost of up to six priority levels. However, normal CPU-bound processes can receive no such boost. Most processes operate at a base priority of four, which means that they can all be scheduled in a round-robin fashion. These processes will execute in that way until they are either preempted or the QUANTUM is reached.

The third thing that the VMS scheduler uses to determine which process to run is the process state. VMS uses wait states similar to the ones described by Stallings. Processes are either readily computable or they must be waiting for a resource. They are either memory resident or must be swapped into memory.

REFERENCES

Bynon, David W. (1990) Mastering VMS. Professional Press, Inc., Horsham, PA.

QA76.76.063D965 1990; ISBN 0-96-14729-7-9.

Compaq Corporation (2001) “OpenVMS Operating System for VAX and Alpha SPD”

URL: http://www.compaq.com/info/SP2501/sp2501pf.pdf

Compaq Corporation (2001) “Enterprise Computing: OpenVms” URL:

http://www.openvms.compaq.com/

Levy, Lipman (1982) “Virtual Memory Management in the VAX/VMS Operating

System” URL: http://www.deas.harvard.edu/courses/cs261/readings/levy-1982.html

McCoy, Kirby (1990). VMS: File System Internals. Digital Press. QA76.76.063M385

1990; ISBN 1-55558-056-4.

Stemm, Mark Richard (1995) “Virtual Memory in the VAX/VMS Operating System”

URL: http://www.cs.berkeley.edu/~gribble/osprelims/F95/summaries/vaxvms/vaxvms.html
