PAGE
10

OS/2 Warp – Overview

IBM’s Operating System/2 (OS/2) was originally developed in collaboration with Microsoft. The objective of the OS/2 was to replace the outmoded operating system of choice at that time: Disk Operating System (DOS). One of the drawbacks of DOS was the lack of built in multitasking. This was the main problem that the developers of OS/2 wished to overcome. The Intel 80286 processor was designed with support for multitasking built into it. Consequently, this was the processor that the first versions of Operating System/2 were built to run on. In December of 1987, the first version of OS/2, OS/2 1.00, was released. At its release, it was first operating system for the personal computer to provide intrinsic multitasking based on hardware support. While only one program could be displayed on the screen at a time, other programs could be running in the background. Version 1.00 operated only in text mode and allowed DOS programs to be run.

The next version was OS/2 1.10 Standard Edition (SE), released in October of 1988. The most noticeable change from version 1.00 was the addition of the Presentation Manager, a graphical user interface. This GUI made interfacing with a personal computer much easier than with the command line interface of old. The Standard Edition also supported FAT hard drives. Soon after the Standard Edition was released in early 1989, IBM released Operating System/2 1.10 Extended Edition (EE). This version included all of that come with the Standard Edition and also Database Manager and Communications Manager.

Operating System/2 1.20 was released in November of 1989 in both the Standard and Extended Editions. The Presentation Manager was improved upon in both versions. Also, a new file system was offered with the Extended Edition: High Performance File System. The HPFS offered greater speed and efficiency than FAT. It is also fragmentation resistant. OS/2 1.20 EE also can with REXX, an interpretive programming language. At the time OS/2 1.20 was being released, IBM and Microsoft were already in the process of developing Operating System/2 2.00 and Operating System/2 3.00. Version 2.00 was to be the first true 32 bit operating system for the personal computer. It would only run on the Intel 80386 processor and its later versions. Version 3.00 was to be a network server version of Operating System/2. Also, by being built on top of a microkernel, it would be platform independent.

Throughout the development of the Operating System/2, Microsoft had also been working on another operating system: Windows. In May of 1990, after the release of Windows 3.0 which earned Microsoft a lot of money, they decided to put more of their effort into Windows and less into the OS/2. IBM did not want to slow down the development of the OS/2, which the loss of Microsoft’s resources would inevitably cause, and so the two split. IBM eventually took complete control over all versions 1.X of the OS/2 and OS/2 2.00. Microsoft ended up with control of OS/2 3.00 which they eventually renamed Windows NT.

Operating System/2 1.30, both in the Standard Edition and Extended Edition, came out in 1991. All of the new code written in both versions was created by IBM. The Standard Edition and Extended Edition were faster, smaller and had many more capabilities than their predecessors. OS/2 1.30 also had more device drivers, which made installations easier and many other enhanced features. A few of these features included a wider range of fonts as well as an improved swapping algorithm that enhanced performance.

The first true 32 bit operating system for personal computers, the OS/2 2.00, was delivered in the spring of 1992. It included the Workplace Shell which was an object oriented user interface. This was the next generation of the GUI since more of it was integrated into the operating and the file system. Version 2.00 also used Virtual DOS Machines (VDM’s) to run DOS and Windows programs simultaneously. IBM’s version of Windows 3.1, Win-OS/2, ran the Windows programs. The programs that were running couldn’t interfere with each other, yet they could still communicate through Dynamic Data Exchange and the clipboard.

The OS/2 2.1 was released in May of 1993. It came with more new capabilities than version 2.0. These included new sound and video capabilities provided by the Multimedia Presentation Manager as well as True Type fonts. Operating System/2 2.11 was released later in 1993 for people who already had Windows on their computer. Instead of coming with Win-OS/2, it relied on the existing version of Windows to run Windows programs.

In 1994 Operating System/2 Warp Version 3 was released to the public. It was the first operating system for the PC to come with Internet support built in. It came with an Internet browser (Web Explorer), both text and graphical FTP, and even its own e-mail editor (Ultimail). It still relied on Windows 3.1 to run Windows programs, but later Win-OS/2 support became available. In 1995 IBM combined Warp 3 with networking tools and released Warp Connect. It allowed for the sharing of resources on a network. In1996 Warp Server was released to the public. It combined Warp 3 with IBM’s LAN server 4.0 and many other products to become one of the leading server environments. In September of 1996, IBM delivered OS/2 Warp 4. Warp 4’s main attributes are that it has JAVA built into it and it has VoiceType speech recognition. The speech recognition allows the user to navigate through the PC by talking to it and dictate to the computer without the addition of any software. Warp 4 also allows the user to connect to many different network clients including Warp Server, Windows NT Server, Novell Netware and NetBIOS to name a few.

IBM did a lot of things right with the OS/2. They greatly advanced the development of the personal computer. It was the first 32 bit OS for the PC, the first OS for the PC with multitasking built in, and the first OS for the PC with built in Internet capabilities. They also made some mistakes, one big one in particular. Some analysts say “IBM tried to turn OS/2 into a better environment for running Windows-based applications than Windows itself.” This strategy backfired on IBM because developers didn’t find the need to create anything specifically for the OS/2 since anything made for the Windows environment would run on OS/2. The development of OS/2 slowed when Windows inevitably won the “battle.” OS/2 was still popular in the banking, transportation and insurance industries. In 1997 it ran on about 32 percents of the world’s 10,000 largest companies Some of these users were AT&T, Sony, Wal-Mart, USMC, US Navy, UPS, Delta Airlines, FAA and U.S. Aerospace Management Corporation just to name a few. IBM is still looking ahead, investing in Java as the development platform of the future.

OS/2 Warp – Task Scheduling

One of the primary functions of the OS/2 Warp operating system is task management or scheduling. The OS/2 Warp operating system is known as a dynamic, priority based, preemptive multitasking system with round-robin scheduling. This kind of design allows the system to react to user requests needs based on priorities of the programs running. While, the OS/2 kernel manages the execution of all tasks running on the system, the scheduler allocates CPU time to each process based on its priority and whether it is capable of running or not.

OS/2 Warp supports user-level prioritization. In the OS/2 Warp operating system, each task is assigned a priority. The priority of each task can be determined directly by the programmer, or, if no priority is assigned, the operating system assigns a default priority. In this priority-based task scheduling operating system, programs that have higher priorities, and are ready to run, are given access to the processor before programs with lower priorities. All other tasks must wait until the higher priority task becomes blocked before they may have CPU time.

Because many tasks will run at the same priority level, round-robin scheduling is used. Round-robin scheduling provides regular time slices of CPU time to tasks running at the same priority level. This limits each task to a short burst of processor time. When a task has taken the maximum time slice, or when a higher priority program is ready to run, the OS/2 Warp task dispatcher preempts the task and rotates to the next ready process.

OS/2 Warp supports 128 priority levels. These are divided into four classes, each with 32 sublevels. The priority values within the sublevels range from 0 – 31, with higher numbers representing higher priorities. Threads are also grouped into priority classes. These four priority classes that determine how the processor schedules a thread’s execution are, ranked from highest to lowest priority:

1. Time-critical (priority 3) - Programs that need to have access to the CPU very quickly, such as communication and networking tasks, are generally assigned to the Time-critical priority class.

2. Server (priority 4) - Server tasks are used by the OS/2 Warp Server to process requests for data by client workstations and to get the data requested ready to transfer across the network.

3. Regular (priority 2) - The Regular class is the priority class in which most application programs run. This is also the default priority class assigned to tasks when the programmer hasn’t directly specified a priority.

4. Idle-time (priority 1) - When a task is assigned an Idle-time priority, it only receives CPU time after all other higher priority tasks have become blocked.

To schedule a thread’s execution, the system first checks the thread’s priority class, and then the priority value that was assigned to that thread. The thread with the higher priority will then be executed.

While each thread receives a priority when it is created (it inherits the priority of the thread that started it), the operating system can change the priority level of the thread based on the dynamic conditions to the user’s environment. For example, it is possible for some lower priority tasks to suffer starvation for CPU time. When a task becomes starved for CPU time, the OS/2 task scheduler can boost the priority of the starved task by one priority level to make sure each task receives at least some CPU time. After the task receives its time slice, it is reduced to its base priority.

Because OS/2 Warp is a priority-based system, the user can actually control the response time the user wants to wait by assigning a priority to a program. This also means that more system resources are available to higher priority programs.

OS/2 Warp - File Management

The process of creating two or more pseudo disks out of one hard drive is known as partitioning. There are numerous different schemes for partitioning a disk. OS/2 Warp is capable of reading from many of them, such as:

· FAT – File Allocation Table

· HPFS - the High Performance File System

· CDFS - the CD-ROM File System

· NETWKSTA - the LAN Server remote file system

· HPFS386 - the LAN Server Advanced network version of HPFS

· HPOFS - the High Performance Optical File System

· SRVIFS - The CID remote installation thin file system

Primarily, however, OS/2 makes use of the widely used FAT partitioning scheme as well as its own scheme, the High Performance File System (HPFS).

In FAT, the hard disk is broken up into blocks 512 Bytes in size. Read and write operations are all done in blocks, so file sizes have to be rounded up to the next integral block size. This is an appropriate scheme for small hard drives, or more effectively for floppy disks. However, if you wanted to use a larger hard drive, you would not be able to map the entire drive in the File Allocation Table. FAT solves this problem by creating “clusters,” which are essentially groups of blocks. The file allocation table maps to a cluster, thereby increasing the total size of the drive allowable.

The problem with this scheme is that for relatively small files, you would have to round up to the next integral cluster size. This leads to a large amount of wasted space on the hard drive. At the time when the HPFS was introduced, the maximum disk size allowed by a 16-bit FAT partitioning scheme without the use of clusters was 32 MB. If you used a relatively large cluster size, such as 8 KB, the largest drive supported would be 512 MB. In practice, the only way to use the FAT scheme effectively was to partition your hard drive into smaller pseudo-drives and keep the cluster size small.

When OS/2 1.0 first shipped out, IBM sacrificed development of the HPFS in favor of other portions of the operating system. Instead, they made use of the FAT scheme. This resulted in poor performance of the Operating System, and helped fuel the use of DOS as an alternative. When IBM released OS/2 1.2, they had finished development of the HPFS. The HPFS was superior to the FAT system in many ways.

HPFS does not have the cluster size limitations of the FAT scheme. The cluster size is always equal to the physical disk block size (normally 512 Bytes). HPFS does not allocate clusters, only sectors. This means that there is less wasted space. Also, the lack of cluster limitations allows for larger hard drives. Another beneficial aspect of the HPFS is that directories are linked in a tree structure, which is a far cry better than the linear arrays used in FAT. The tree structure allows for quicker and easier searching of the hard drive. Also, the tree structure allows for easier repair of disk errors.

Perhaps the greatest advantage of the HPFS, other than the support of large hard disks, lies in the fact that drives formatted using HPFS are subject to much less fragmentation. Fragmentation occurs when the operating system scatter portions of files over the entire hard drive, rather than near each other where they belong. In HPFS, the selection of the next block location when saving a file is more complex than just finding the next available block, as used in FAT. HPFS drives try to save blocks of the same file near to each other. Therefore, HPFS drives hardly ever need to defragmented and certainly need it less frequently than drives formatted using FAT.

In addition to the support for large hard drives and the decrease in fragmentation, the HPFS offers a few more advantages over the FAT scheme (from www.lesbell.com):

· Support for long file names - up to 254 characters in length

· upper and lower case - HPFS preserves case, but are not case sensitive

· extended character sets

· Native (non-fragile) support for EA (Extended Attributes)

· Higher performance. FAT degrades rapidly as drive size goes up and lots of files in directories, while HPFS does not

· Much greater integrity: signatures at the beginning of system structure sectors, forwards and backwards links in fnode trees

· Not compatible with Win95

The only real disadvantage to using the HPFS is that it is more complex. HPFS requires 300kB of memory for the code, plus more for the cache. Of minor concern is the fact that FAT is more widely supported in terms of use by other operating systems. You need third party drivers to access it under Linux or DOS. These issues of the large overhead are more than made up for by the increase in performance of HPFS drives, particularly for large disks.

OS/2 also stores files differently than other operating systems. In particular, the way it deals with the extended attributes (EA) of files is different. HPFS systems store more information per file than FAT does. In addition to being longer than 11 characters in length, HPFS directory entries contain what are known as “extended attributes.” This can be any extra information about a file (for example, its icon file). For systems running on an HPFS drive, this isn’t a problem since the EA for each file is stored separately and close to the file on the hard drive.. On a FAT drive, OS/2 will create a separate file in the root directory called WP ROOT.SF. This file stores the extended attributes of every file that has them on the drive. Unfortunately, this file can grow rather large and can become a problem for the user.

OS/2 Warp – Memory Management

In a multiprogramming system, user memory must be divided up dynamically to accommodate multiple processes loaded simultaneously inside of memory. This partitioning of main memory is one of the most important tasks of the OS, and is called memory management. In order to maximize processor efficiency, an effective memory management scheme must be employed; if not, only a few processes will be able to load into memory at the same time, and thus the processor will spend much of its time idle while waiting for I/O.

As stated above, the principal function of memory management is to import processes into main memory that are to be given processor time. Most modern multiprogramming environments, including IBM’s OS/2, use virtual memory (memory allocated on a separate disk) to accomplish this task. There are two basic memory management techniques that utilize virtual memory: paging and segmentation.

Paging is a memory management tool that is based around partitioning main memory equally into relatively small chunks. These chunks of main memory (page frames) can be allotted to chunks of process memory (pages). For OS/2, the default page size is 4KB. The operating system must keep track of the frames that are currently unused. It must also keep track of the pages for each process, and does so with a page table. This page table maps the page to particular page frame(s) inside of main memory. This allows for a process to be spread across more than one page frame.

IBM’s OS/2 (like many others) carries out paging with a method called swapping. Swapping allows you to use some disk file (thus utilizing virtual memory) as an extension of main memory, because in most multiprogramming environments you are likely to need more memory than is physically available on your system. As a result, OS/2’s (and any OS that utilizes swapping) page table must also keep track of whether or not each page is physically in memory or not. If a page is physically in memory and is requested by the processor, then nothing out of the ordinary happens. However, if a page that is not present in physical memory is requested, a page fault occurs. In this case, your program will block temporarily while the page is loaded in from disk.

It is fairly obvious that a swapping scheme such as this provides much flexibility for multiprogramming environments. However, it does have a downside. Swapping processes in and out of main memory contains a large amount of overhead and has the potential to seriously slow your system down. If there is a high demand for main memory, your system may spend a small amount of time doing useful work because most of its energy is spent swapping processes. This extremely inefficient utilization of resources is known as thrashing, and gives the impression that your system has slowed to a crawl. This thrashing mentioned above was a large problem for OS/2 users. One official in a large OS/2 Warp user group referred to it as the classic memory mismanagement typical of the OS/2 environment.

Segmentation is another memory management technique that works to protect processes from being overwritten by other ones (or by themselves). No process can access memory segments that belong to another process unless the segment(s) was specified to be shared. OS/2’s segmentation implementation also uses privilege controls that set up a hierarchy among segments – ie. which process can execute dangerous operations, etc.

True segmentation didn’t come along until the Intel 286 processor – which OS/2 1.x was based off of. It is a common misconception that the 8086 processor used segmentation, but it in fact only used a segmented addressing system that emulated the theoretical segment model. The 8086 was missing crucial (expensive) hardware components that helped implement the memory protection that is the trademark of true segmentation. These components could have been included for all machines, but computer prices would have increased substantially.

Though segmentation hardware existed after the 286 (all OS/2 systems) processor, it was and is still today rarely used by OS/2 programmers. There were a few obvious reasons for this. First, the 8086 (predecessor of 286) tainted the idea of segmentation. Even though it didn’t use true segmentation, many people could not clearly see the distinction between the true segmentation capabilities of the 286 and the emulated “segmentation” used by the 8086. Secondly, many of the 286 applications were running software designed for the 8086 because most of the existing software was written for the 8086. The solution was to create two operating modes for the processor – protected mode (new memory protection features enabled), and “read mode” (processor acts like 8086). However, very little software was written for the 286, so this “solution” didn’t utilize the segmentation capabilities of the 286. (Note: This inefficient resource use was solved with Intel’s 386 chip, which allowed a process in protected mode to run an 8086 emulator. Therefore a system could run in protected mode at all times and still run the legacy 8086 software.) Lastly, the maximum segment size for the 286 was a little too small (64KB – 16bit) for most people’s taste. If the need arose for more than 64KB to be used for a single memory object or data structure, the programmer and the operating system had to take this limitation into consideration, and implement appropriate algorithms to use multiple memory segments for a single logical structure. The 386 broadened (4GB – 32bit) the limited segment size, however by the time the 386 processor was released most people had passed on the thought of segmentation.

The memory model currently used by the OS/2 is called the flat memory model. This term refers to the fact that memory is regarded as a single large linear address space of 4GB. Obviously, on a machine that implements segmentation, there is no way to disable the segmentation. However, OS/2 programmers found a way to bypass it. The idea is to crunch an entire program (data and code) into one large segment, and to arrange so that all segment registers point to the same segment. This way, there technically are several segments defined, however functionally there is only one. With this model implemented, the programmer must only worry about offsets within the one large segment.

The system's global address space is the entire 4GB linear address space. Each process has its own process address space, separate from that of all other processes in the system. All threads within a process share the same process address space. This address space is also theoretically 4GB in size. However, the maximum size for process address spaces is less than 4GB because memory must be allotted to the operating system for some of its resident processes.

The drawing below shows the mapping of a process address space into the system's global address space. OS/2 sets the limit of the process address space to 512MB, reserving the address ranges above this point for operating system use. The space above 512MB is known as the system region, and is used solely by the operating system for resident processes.

PRIVATE

 PRIVATE

PRIVATE

Threading and Processor Modes

Like most modern-day desktop operating systems, OS/2 Warp contains support for multithreading. This means that programs can each run multiple threads, like how an operating system splits up the CPU’s processing time to run multiple processes. Therefore, a process can seem to be doing multiple things at a time, such as file I/O and processing user input, even though there is only one CPU. To handle multiple threads, OS/2 uses a combination of states, privilege settings, and priority classes to determine which thread runs on the processor.

Threads have 3 different states: running, ready, and blocked. The running state indicates that the thread is currently processing on the CPU. A ready state means the thread is ready to be run on the processor, and the blocked state usually means the thread is waiting for I/O, and has been put to sleep. These 3 states allow the operating system to determine which thread to switch to when a thread switch occurs, since a thread cannot run if it is blocked.

OS/2 also uses privilege settings to handle threads. On 386 processors and above, there are four levels, or “rings”, of privilege: ring 0, 1, 2, and 3. These increase in control from ring 3, being the user level, to ring 0, being supervisor mode. Ring 2 acts like a superuser mode and is very similar to ring 3, but ring 1 is not used in OS/2. So, there are basically 2 commonly used modes, ring 0 and 3. As an example of the types of threads run on each, the kernel and device drivers would run on ring 0, while the user applications reside on ring 3. These rings are used to clearly define the level of access a thread is entitled to.

There is also the matter of how OS/2 schedules these threads. Ring 0 and ring 3 have different methods of task scheduling, since ring 0 is cooperative and not preemptive. However, both of these rings share a common set of priority classes. These classes are idle(I), regular(R), foreground server or fixed high(S), and time-critical(TC). These priorities increase in importance from I to TC. Idle threads are only supposed to run when nothing else is running, like the SETI or RC5 cracking programs in Windows which utilizes spare CPU cycles to do something meaningful. Regular threads are just that, ordinary threads, and this class serves as a baseline concerning the priority of other classes. Foreground server or fixed high threads are like regular threads, except when they are placed in the background, for regular threads lose priority when placed in the background and S-class threads do not. Finally, time-critical threads are assigned the highest priority and are tasks that must be accomplished before all others.

For additional control, each priority class is assigned another value, called delta, which ranges from 0 to 31. Therefore, even within a particular priority class, there is an even finer level of detail for the operating system to determine which thread to switch to next. While the actual priority class cannot be changed dynamically, the delta value can. Because of this, a thread can make itself more important while it is running if it needs to do something more critical.

These differences in thread priority classes are not used very much in ring 0 threads, since ring 0 is cooperative rather than preemptive. Ring 0 threads are very important, and as such they should not be interrupted as frequently, plus the fact that there are fewer threads running at that ring means priority classes are less important. However, since all the user applications are running on ring 3, scheduling threads becomes much more important, since there is the possibility of many more threads running concurrently.

The main important topic in ring 3 scheduling is the difference between TC threads and other threads. For anything other than a TC thread, OS/2 uses a 32-millisecond time slice for scheduling. This means that every 32 milliseconds, the operating system stops executing the current thread and searches for the highest-priority thread to run. For TC threads, this time slice is shortened to 8 milliseconds. Therefore, when there are 2 or more TC threads in a ready state, the operating system checks on them every 8 milliseconds. In addition, if a TC thread with a delta value higher than the current TC thread enters the ready state, the operating system immediately switches to the higher priority thread, even if 8 milliseconds has not elapsed since the last priority check.

Overall, because of the basic difference between preemptive and cooperative multithreading, OS/2 Warp is a much stabler and efficient platform than Windows 95. Since a greedy thread cannot take control over the computer like in Windows, thread starvation cannot occur under OS/2. With the combination of privilege rings, states, and priority classes, OS/2 provides a large amount of control over the priorities of threads, which makes it a very stable operating system.
4 GB

Process Address Space

System Region

N (512MB)

0

