PAGE
14
An Overview of the Linux Operating System

An Overview of the Linux Operating System

Chad Dalton, Robert Grey, Jonathan Mencher, Andrew Serene, Greg Tumolo

CS351 Operating Systems – Section 2

Spring 2001

Table of Contents

31.
Overview and Introduction

3Technical and Commercial Issues

3Advantages and Disadvantages

3Kernel

42.
Linux Data Structures

4Process Management

4Process States and Scheduling

4Process Links

4Process Security

5Process States

73.
Threading

7What is a Thread?

7User-Level Threads

7Kernel-Level Threads

7Where in Linux its used

7How the Kernel Accesses the Threads

94.
File Management

115.
Linux Memory Management

11Linux Virtual Memory

11Virtual Memory Addressing

11Page Allocation

11Page Replacement Algorithm

126.
Linux Scheduling

147.
Works Cited and Work Assignments

14Works Cited

14Work Assignments

Overview and Introduction

The first version of Linux, version 0.01 was finished in September of 1991, written by Linus Torvalds for IBM compatible personal computers. Over the years, Linux has become available to run on Alpha, SPARC, Motorola, and PowerPC. The majority of the code was written in C and other portions were implemented using Assembly designed to run on a 386. It used a 64-megabyte per task segmentation. The original version had no portability but over time this feature was also made available. The second version of Linux, 0.02 was released in October of the same year and shortly after 0.03 was released. Since then, versions have been released quite often.

Technical and Commercial Issues

Linux has been extremely successful technically. Linux crashes far less than Microsoft Windows and is a much faster operating system. It gives the user access to make changes to any source code they would like in order to configure in the system according to the user’s likes and dislikes. Technically, there are far less errors in the code than Microsoft Windows, its major competitor.

Linux is not a commercial operating system; it is made available to anyone wishing to download to code. The source code is protected under the GNU Public License, which is coordinated by the Free Software Foundation, Inc.

Advantages and Disadvantages

Another element that the writers of Linux have done well is they have made it compatible with many other common operating systems. It allows you to mount file systems on MS-DOS, Microsoft Windows, Solaris, Mac OS/2, and SunOS. Also, Linux is very well supported; it is very easy for users to download updates and patches. Also, drivers for Linux are usually available a few weeks after new hardware is released.

The main disadvantage of Linux is it is not a very user-friendly operating system and users need knowledge of computers and the operating system in order to successfully control it since the user is only given a blank screen and a control prompt. However, there is a great deal of documentation out there if a user would like to learn the system. Linux can be very difficult and complex to install. There are many different versions of Linux and there are few applications designed to run primarily on Linux, which can take away from functionality.
Kernel

Linux is a true UNIX kernel, which contains the main features of the operating system such as multitasking, virtual memory, fast TCP/IP drivers, shared libraries, multi-user capability, and protected mode allowing programs to access physical memory. However, Linux alone is not a full operating system because it lacks applications such as file system utilities, windowing systems and graphical desktops, system administrator commands, text editors, and compilers. Linux also offers distributions, add-ons to the kernel to enhance program features. Distributions include Red Hat and SuSE. Linux also continues to be used as a major networking tool in business as the platform for servers, as well as supporting many Internet protocols such as FTP, POP, NTP, and DNS.

Linux is written as command-line user interface, but can also be installed using a graphical-user interface by installing the X Windows User interface, which is set up much like Microsoft Windows.

Linux Data Structures

Process Management

The Linux kernel uses a structure called task_struct to define a process. It is defined in the Linux kernel in the file includes/linux/sched.h(278). In this structure there are several fields that define a task (process), process state, priority, related processes, memory management information, process ID, file specific process data, and timing information. Each running process has an entry in the process table, which holds a pointer to this structure. The table is maintained as a Vector of pointers to task_struct’s and as a doubly linked list with the /sbin/init process being the first process; it always has a process ID of 1. As processes execute their information in the kernel is updated and can be viewed from the /proc file system, in a subdirectory of that process ID. This allows the user to view information about the current running processes and the values of each of the fields in task_struct.

To define the various fields of task_struck we will be looking in the GNU version of the Linux 2.4.x kernel unmodified and downloaded from <ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.2.tar.gz>. This version has not been modified in any way nor were any patches added. There are many more items defined in task_struct but we will only cover the relevant ones to our discussion here.

Process States and Scheduling

As a process executes its state is constantly being updated. The value that is being updated is volatile long state and can have one of five values. These values are defined as TASK_RUNNING, TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, TASK_ZOMBIE, or TASK_STOPPED. Each of these states is covered in another section, process states. Along with the process state a variable also holds the priority of the process. This is long nice, (it changed from long priority as defined in v2.2). The priority of a process can be changed using the Linux command renice. Each process is given an amount of time that it is allowed to run, a slice; the variable long counter defines this in jiffies (10ms intervals). When it is a processes turn to run the value of long counter is set to equal priority and it is decremented each clock tick. Once it reaches zero the process is swapped out and a new process is chosen from the schedule queue.

Process Links

In task_struct each process has links to other processes. Earlier we mentioned that the process table is maintained by a doubly linked list. This linking is accomplished by two pointers to task_struct called *next_task and *prev_task. As their names suggest, next_task points (*) to the next process in the task Vector and prev_task points (*) to the task before this one in the task Vector. In addition to these pointers to processes we also have five others, *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr. Which are, pointers to (original)/parent process, youngest child, younger sibling and older sibling, respectively. Each process consists of at least one thread. For a process to keep track of their threads a struct has been defined as list_head thread_group. The list_head struct is a doubly linked list implementation defined in list.h and points to the current threads that this process is using.

Process Security

Each process knows who started it and what group they are in. For now we will assume you understand that uses belong to groups and each maps to numbers in /etc/passwd and /etc/group. For the processes to keep track of the starting uses credentials several variables have been defined, uid, euid, suid and fsuid these are of type uid_t for user identification. For group identification similar variables are defined, gid, egid, sgid and fsgid these are of type gid_t. This is important because whatever permissions the user has on the system so will the processes that he starts. This is the basis for user/group security in Linux. The NSA with their NSA version of the Linux kernel has taken another approach on this concept. Their version contains many modifications to the task_struct data type mostly for added security mechanisms.

Process States

Linux currently has four different process states, or execution contexts. These states are used by the operating system to manage a process and by the processor to execute the process properly. Examining these states will help us to see how Linux handles processes in correlation with events that may be caused by the machine or the process itself.

In order for processor states to be effective, they must store a reasonable amount of information. This information is used by the scheduler and the processor when it is time for the process to be run. In addition to knowing the actual state of the process, it is necessary that the state store such information as each register’s value, the program counter, and the stack pointer. This information is available for all states during a process’ life cycle.

The four main process states of Linux are running, waiting, stopped, and zombie (Flower). These states are also used by Linux when dealing with threads because each thread is treated as if it were its own process. Some of these states, such as running and waiting, contain other sub states. A more detailed explanation of each state is given below:

Running: A process in the running state is the current process in the Processor, and it is currently carrying out its execution.

Running: Ready to Run: A process in this state is currently in a run queue. These processes are completely ready to be run and are only waiting for the processor to become available.

Waiting: Interruptible: A process in this state is waiting for a resource or an event to occur before it can continue execution.

Waiting: Uninterruptible: A process in this state is also waiting for a resource or an event to occur before it can continue execution. However, this state also disables and signals from interrupting itself.

Stopped: A process in this state has been stopped by a SIGSTOP signal. This usually occurs when debugging is being performed.

Zombie: A process in this state has completed its execution and is ready to be removed from the system. The only reason it still exists is because the scheduler has not yet detected it, so it remains present for the time being.

We can reasonably map these to the five process state model used in class (Stallings, 115). Stallings’ ready, running, blocked, and exit states can be directly mapped to corresponding states in Linux. Stallings ready state is just like the running: ready to run state in Linux. They both are states in which the process is simply waiting for its turn with the processor. The running states for both models are also the same because they both refer to the process being the current process in the processor. While Stallings did not offer an explanation for a process being uninterruptible, his blocked state and Linux’s waiting states are similar. The both say that a process in this state is forced to wait for a particular resource or event to occur. Linux’s zombie state is just like Stallings’ exit state because both refer to the state after a process has completed its execution, but before it has been removed from the system. The only state in Linux that Stallings did not make reference to is the stopped state. This may be because it is similar to a Waiting state because the process is really just waiting for an event to make it step to the next line or terminate. Stallings also makes reference to a new state, which simply refers to the instance after a process has been created, but before it has been loaded and initialized. This is not directly regarded as a state in Linux, so we have chosen to not place it in our list of states above or in the comparison.

Process states are necessary in any multi-processing environment. Each operating system offers its own solution to this necessity, but they are all similar when viewed as a whole. Linux has advantages in its process state model that make it very efficient, but it is not the only solution.
1. Threading

What is a Thread?

A thread is a portion of a process, broken up into parts to enable for the computer to run more efficiently. This can also be referred to as a “stream of execution.” Multithreading refers to a computer being able to handle more than one thread of a process running simultaneously. In Linux, there are two types of threads, user-level threads and kernel-level threads.

User-Level Threads

A user-level thread allows the user to manipulate the threads without any kernel involvement. The user can accomplish this by moving the stack point at his discretion. This reduces the overhead for the initial programming by the writer of the operating system. Also, user-level threads usually switch faster than kernel-level threads which adds to processor efficiency.

There are three main disadvantages to user-level threads. One, starvation can often occur if one thread takes up too much of the time-slice. The second is if one thread gets blocked, all other threads in that process will lose their timeslice. Finally, it cannot take advantage of any operating systems that can use symmetric multiprocessing.
Kernel-Level Threads

Since the only advantage in Linux of using user-level threads is cooperative multitasking, Linux primarily uses kernel-level threads. Kernel-level threads implements the use of multiple tables in which each thread is executed within a timeslice of the process. There are many advantages of using this method. Input/output blocking is not a problem as it is in user-level. Also, the operating system’s code can take advantage of symmetric multiprocessing.

Where in Linux its used

Linux 1.3.56 is the first version of the operating system that supports kernel-space multithreading. Since version 1.0.9, it has incorporated user-space thread libraries. Since Linus Torvalds defined threads as “streams of execution, only one thread table and one scheduler is needed as opposed to other multithreaded operating systems where many tables are used. Linux uses multiple threads per process.

The libraries programmed into Linux do not support multithreading. This would increase the chances that the operating system would crash because there are many resources that are hidden by the system and may be shared inadvertently. There are also conflicts between libraries in application reserved signals. Currently programmers are working to program their libraries so they coordinate with each other.

How the Kernel Accesses the Threads

Each process contains at least one parent thread and as each thread is spawned, it is assigned a TID, thread identification. Each thread also contains a PID, parent identification. All threads that are children of the same parent are assigned the same PID. Each thread can be referred to individually or as a group. For example, an application has three threads, one parent and two children, and the threads share the parent's PID. If the TID for the parent is 0x00011234 and the children’s TID’s are 0x00021234 and 0x00031234, each thread can be accessed with the address 0x00001234.

2. File Management

One of the biggest advantages for Linux is its flexibility. As of 1999, Linux supported 15 different file systems with promises of more to come. This allows Linux to easily coexist with several different operating systems on the same machine. This also shows the extensive use of modularity that Linux uses in its file management system.

The biggest difference between Linux and most other operating systems is that you do not access separate file systems by device identifiers. Instead, Linux continues to use the Unix approach. When a new file system is added, Linux adds it into a single hierarchical tree structure. To the user, it would appear as if this new device is simply another directory in the main file system. New devices can even be mounted on top of a current directory. When this occurs, the original contents of the directory are hidden until the new device is unmounted.

With the use of different drivers and different formatting schemes, Linux does not know anything about the underlying drive storing the data. This was made possible by the development of the Virtual File System in 1992. Because of VFS, all file systems on a Linux system look and feel the same to the user. Although it was originally designed to separate the real files from the operating system and other system services, VFS provides a software interface that can link all of the machines file systems together. For the most part, the user cannot tell if they are accessing different hardware devices or partitions. The file system is responsible for storing all information regarding the files in a directory, the links to other directories, and any file protection information.

The main job of the VFS is to keep the integrity of the data while allowing for fast and efficient access to them. VFS does this by caching information into memory for each file system that is mounted. A VFS superblock represents each mounted file system. Because the cache is used mostly for speed purposes, the VFS must be sure to keep all information between the cache and the actual data completely accurate. These superblocks contain information regarding the device, inode (information node) pointers, block size, a list of available operations, file system type, and a pointer to other information that may be needed for the specific file system.

When Linux was first introduced, it used a rather primitive file system known as minix. Minix supported a maximum file size of 64 Megabytes and only allowed for 14 character filenames. Minix used the basic characteristic of other Unix file management systems, the inode (information node). An inode is a control structure that contains the key information needed for a file, such as permissions and other control information. Minix worked fine, but the 64 Megabyte maximum file size was a hindrance to some. So, in 1992, the Extended File System (EXT) was introduced. The greatest accomplishment of EXT was its introduction of the VFS to Linux. However, EXT quickly made way for the Second Extended File System (EXT2) in 1993.

Since then, EXT2 has become the most successful file system for Linux and is the basic system shipped with all major distributions of Linux (Rusling). EXT2 uses fixed size data blocks of equal length to store data. While the block sizes are fixed, the actual block size used is determined when formatting the drive. This is done to decrease the amount of work that the processor must do, but is a very inefficient use of memory. Using fixed block partitioning usually results in wasting a half block per file on average. Blocks in EXT2 file system are also grouped into block groups. Each block group contains a copy of the information that is considered critical to the integrity of the entire file system and the blocks storing the actual files and directories.

EXT2 also uses inode files to keep track of important file information. Each file in the file system has a corresponding inode, and each inode has a single, unique identifier. All of the inodes for the file system are kept in inode tables, and not with the corresponding files. Each inode contains a pointer to their directory entries as well as owner information, file size, timestamps, and the mode. The inode tables are an important part of the information stored for each superblock in the VFS.

Linux supports several other file formatting systems, which are not discussed here. These file systems include xia, umsdos, msdos, vfat, proc, smb, ncp, iso9660, sysv, hpfs, affs, ufs, and many others. EXT3 has even been released in the last year, but it is simply EXT2 with journaling support (Florido). However, The main advantage of Linux is its use of VFS and its ability to support so many different file formats.

The file system in Linux is a very extensive. Linux has the ability to support 27 different file systems ranging from minix to a socket file system. To accomplish this Linux uses what is called a VFS or Virtual File System. This system allows several different types of file systems to be mounted under the root directory (/). The data structure used to implement the VFS is called inode. The purpose of an inode is to map file block numbers to physical device addresses. The inode structure is not the only structure used for file management, to describe an open file in Linux the file structure is used. Much like all other structures mentioned in this section file is maintained as a linked list using the struct listhead to point to the next file and the previous file. Each time a process opens a file another struct is used called file_struct. Since many file systems are supported and others can be added through lodable modules a struct for each file system is also included. This struct is fs_struct.

[image: image1.wmf]

[image: image2.wmf]

 In the file struct another structure file_operation is defined. This structure defines functions such as read, write, readdir (for listing directories), open, release (to close a file) and several others. It is important to note at this point that everything in Linux is viewed as a file from physical devices to the current information about a process (the /proc file system).

In Figure 4 we see the relationship of the VFS to the rest

of the file systems. When a new file system is mounted, be it EXT2 or MINX it registers with the VFS. Each of the caches listed is used to speed up various operations in the file system. Each time a file is opened on one of the file systems the data structure; file, is filled in with the physical information needed to access the file. This structure also contains the security information (user/group) permissions of the file also.

Linux Memory Management

Linux uses a complex memory management scheme that is similar to that of other UNIX implementations but unique in several ways. The following overview of this scheme is based on the one given in Section 8.4 of Operating Systems.

Linux Virtual Memory

Virtual Memory Addressing

Linux uses the following three structures for virtual memory addressing:

· Page directory: Each active process has a page directory that is limited to one page. Each entry in the page directory refers to a page in the page middle directory.

· Page middle directory: Each active process has a page middle directory that may span multiple pages. Each entry in the page middle directory refers to a page in the page table.

· Page table: Each active process has a page table that may span multiple pages. Each entry in the page table refers to a page of virtual memory.

In Linux, a virtual address consists of four fields. The first field contains an index into the page directory. The second field contains an index into the page middle directory. The third field contains an index into the page table. The fourth field contains an offset into the page of virtual memory.

[image: image3.wmf]

Page Allocation

Linux maps blocks of contiguous pages onto blocks of contiguous page frames to enhance the efficiency of page allocation. To meet this end, the kernel maintains a list of available blocks of 1, 2, 4, 8, 16, or 32 contiguous page frames. As pages are allocated, the blocks in this list are split and merged using the buddy algorithm described in Section 7.2 of Operating Systems under the heading “Buddy System.”

Page Replacement Algorithm

Linux uses a page replacement algorithm based on the clock algorithm described in Section 8.2 of Operating Systems under the heading “Basic Algorithms.” The Linux scheme uses an 8-bit age variable instead of a use bit. Each time a page is accessed, its age variable is incremented. Periodically, the age variable of each page in the global page pool is decremented. The page with the smallest age is the best candidate for replacement since it has been least frequently used.

3. Linux Scheduling

This overview is based on the one given in Section 10.3 of Operating Systems.

Linux uses the following three classes for scheduling:

· SCHED_FIFO: First-in-first-out real-time threads
· SCHED_RR: Round-robin real-time threads
· SCHED_OTHER: Other, non-real-time threads

Objects of type SCHED_FIFO and SCHED_RR are of higher priority than objects of type SCHED_OTHER. Multiple priorities may be used within each of these classes to facilitate more complex scheduling algorithms.

The following rules apply to FIFO threads:

1. The system will only interrupt an executing FIFO thread in the following cases:

a. Another FIFO thread of higher priority becomes ready.

b. The executing FIFO thread becomes blocked waiting for an event.

c. The executing FIFO thread voluntarily gives up the processor.

2. When an executing FIFO thread is interrupted, it is placed in the appropriate priority queue.

3. If a choice must be made between threads of equal priority, the thread that has been waiting the longest is chosen.

The rules that apply to RR threads are similar to those that apply to FIFO threads, with the addition of a time quota for each thread. When a RR thread meets its time quota, it is interrupted and a real-time thread of greater or equal priority is dispatched.

The figure below (adapted from a similar figure on page 463 of Operating Systems) illustrates the difference between FIFO and RR scheduling.

[image: image4.wmf]

	Relative Thread Priorities

	A
	Minimum

	B
	Middle

	C
	Middle

	D
	Maximum

While viewing the figure, assume that the program has four threads with three relative priorities assigned as shown, that all waiting threads are ready to execute when the current thread waits or terminates, that no higher priority thread is awakened while a thread is executing, and that thread B has been waiting longer than thread C.

Part b of the figure shows a flow in which all of the threads are FIFO threads. First, thread D executes until it waits or terminates. Next, thread B executes until it waits or terminates. Next, thread C executes until it waits or terminates. Last, thread A executes.

Part c of the figure shows a flow in which all of the threads are RR threads. First, thread D executes until it waits or terminates. Next, thread B executes until its time slice expires. Next, thread C executes until its time slice expires. Next, thread B executes until it waits or terminates. Next, thread C executes until it waits or terminates. Last, thread A executes.

In the event that all of the threads are SCHED threads (not shown in the figure), the traditional UNIX scheduling algorithm described in Section 9.3 of Operating Systems is used.

Works Cited and Work Assignments
Works Cited

Florido, Juan L. Santos (2000). Journal File Systems. Linux Gazette, 55. URL: http://www.linuxgazette.com/issue55/florido.html

Flower, Glenn (1997, December). Processes on Linux and Windows NT. Linux Gazette, 23. URL: http://www.linuxgazette.com/issue23/flower/page1.html

Linux International (2001). “Linux History.” URL: http://www.li.org/linuxhistory.php

Pirkola, Gary (1999). “Linux Overview/Issues Request for Comments.” URL: http://www.umich.edu/~plan/talkingpoints/linux/rfc.html

Rusling, David A. (1999). “The Linux Kernel. Linux Documentation Project.” URL: http://www.linuxdoc.org/LDP/tlk/
Stallings, William (2001). Operating Systems (4th ed.). Upper Saddle River, New Jersey: Prentice Hall
Torvalds, Linus (1999). “The Linux Kernel Source v 2.4.2”
Walton, Sean (1996). “Linux Frequently Asked Questions (FAQ).” URL: http://linas.org/linux/threads-faq.html

Work Assignments

Chad Dalton – research, portion of the paper “process management, file management, memory management”

Robert Grey – research, power point, speaking role, compilation of final paper

Jonathan Mencher - research, portion of the paper “overview, threading”

Andrew Serene - research, portion of the paper “file management, process states”

Greg Tumolo - research, portion of the paper “memory management, scheduling”
Figure � SEQ Figure * ARABIC �1� -- VFS Relation

Field 1

Field 2

Field 3

Field 4

A virtual address in Linux

Index into page directory

Index into page table

Offset into page of virtual memory

Index into page middle directory

D�	B�	C�	A�

D�	B�	C�	B�	C�	A�

a) Flow with FIFO scheduling

b) Flow with RR scheduling

Example of Linux Scheduling

[image: image5.wmf]

[image: image6.wmf]

[image: image7.wmf]

[image: image8.wmf]

[image: image9.wmf]

[image: image10.wmf]

[image: image11.png]