An Inside Look at the Windows 2000 Operating System

CS351 – Operating Systems

Section 2

Spring 2001

Professor Charles Abzug

Troy Gladhill

Amanda Johnson

Saunders Roesser

Joshua Taylor

Hannah Young
Table of Contents

2Windows 2000 Overview

2Processing in Windows 2000

4Threads

4Deadlock

5Allowable Thread States

6Facilities for Mutual Exclusion and Synchronization

7Memory Management in Windows 2000

8File Management under Windows 2000

9Process Management Data Structures

10Memory Management Data Structures

11Scheduling

11Single Processor

11Multiprocessor

12Bibliography

Windows 2000 Overview

Windows 2000(W2k) is the most recent and most advanced operating system released by the Microsoft Corporation. Designed with businesses in mind, it comes in four flavors, for four specific uses. First, there is Windows 2000 Professional, designed for desktop and laptop installation on business machines. Next is Windows 2000 Server, designed for low-end file and print servers. Then there is Windows 2000 Advanced Server, for mid level servers that need clustering support. Finally there is Windows 2000 Data Center Server designed for high-end servers used in data warehousing and mission critical services.

Windows 2000 is the most advanced and most sophisticated operating system ever released by the Microsoft Corporation. Some of the features built into all three versions of Windows are: Full 32 Bit Compatibility, multiple file system support, latest hardware support, multiple tools to ease system administrative duties, advanced networking support, and complete internet integration
.

With the release of the Windows 2000 family of Operating System, Microsoft has worked to earn a reputation of a stable operating system that would be the de facto standard for businesses to use. The operating system was designed to support the needs of companies by providing features like centralized management, improved system file protection, built in security, and increased uptime. According to the National Software Testing Lab (NTSL)
, Windows 2000 Professional had a Mean Time To Failure that is 13 times greater then Windows 98, and 3 times greater then Windows NT 4.0, making Windows 2000 the most reliable OS produced for the desktop.

As of February 2001, sales of licenses of Windows 2000 have nearly reached one million
. However, sales of the higher end versions of Windows 2000, mainly Datacenter Server, only make up a few hundred of the million licenses sold. Overall though, Windows 2000 has been successful in implementation and deployment in the industry. Microsoft had a big part of their reputation riding on this operating system and it’s success in the computer world and many customers have been brought back to using a version of Windows 2000 operating system.

Processing in Windows 2000

Windows 2000, like most modern operating systems, employs a user mode and a kernel mode. In addition, Windows 2000 is a "multithreaded, multitasking operating system capable of running on computer systems with multiple microprocessors".

The user mode consists of two different components. First, there are environmental subsystems that emulate other operating systems, such as OS/2 and POSIX. Thus, Windows 2000 allows the user to run applications from these operating systems. By using the APIs (application programming interfaces) that are required for the applications of other operating systems, Windows 2000 accepts calls to these APIs and then converts this information into Windows 2000-comprehensible material. Then, the converted API is sent to the Executive services for further processing.

Although the use of APIs allows users to run applications from other operating systems, the environmental subsystems have their limitations. Unlike applications meant for Windows 2000, these other applications have no direct access to hardware or external devices. They also have a limited amount of address space and can only use hard disk space as virtual random access memory. Furthermore, these applications have a lesser priority than any kernel mode applications, which gives them less access time to the CPU.

In addition to the environmental subsystems, there are also the integral subsystems. These subsystems perform important operating system functions. For example, the security subsystem "tracks rights and permissions associated with user accounts".
 In addition, user authentication and logon are also handled by this system. Another example of an integral subsystem is the workstation service. This system allows the user to access the network from their computer.

The kernel mode consists of four major components, including the Executive, the device drivers, the microkernel, and the Hardware Abstraction Layer (HAL).

First, the Executive handles I/O operations and object management. Within this component, two types of services are provided. The system services are available to both user-mode and kernel-mode components. The internal routines are only available to the kernel-mode components. Second, the device drivers simply "translate driver calls into hardware manipulation," thus interpreting commands for various devices and carrying out those commands.
 Third, the microkernel manages the microprocessor and coordinates activities associated with the Executive services. Compared to the Executive, these components have a less complicated job to perform. Finally, the Hardware Abstraction Layer (HAL) hides the details of the hardware specifications, allowing the operating system to run on different platforms. Thus, Windows 2000 is able to run on both Intel-based and Alpa-based platforms.

All four of these components make up the main control mechanism for Windows 2000.

Since Windows 2000 is a multi-threaded, multi-tasking operating system, it is capable of running multiple processes that may contain multiple threads of execution. To the user, it appears as if multiple applications are running simultaneously. However, each of the applications is only running concurrently, each one receiving processor time at different intervals. In order to implement this design, Windows 2000 uses context switching to handle multiple processes. First, a thread executes until an interrupt is detected or it must wait for needed resources. Second, the context of the thread is saved by the system. Third, the system selects another thread, loads its context and that thread begins to execute. This process continues in this manner for all threads running in the system.

In addition to multi-tasking, Windows 2000 also employs multi-processing. Specifically, Windows 2000 operates under a symmetric multi-processing scheme (SMP). Under this scheme, the operating system can run two or more microprocessors. Both operating system processes and user application processes can be run on any available microprocessor. Therefore, the performance of the operating system is optimized since no processors are idle. If there is work to be done, the processors are taking care of it.

Threads

A process is one instance of a running application and all the memory and other resources associated with it. A thread is one path of execution through the application's code. In the Win32
 environment a process can consist of one thread or it can consist of many. Both processes and threads are preemptively multi-tasked, so it is unnecessary in the Win32 environment for one application to give way so that others can get processing time. Instead, the operating system uses a scheduling mechanism to interrupt, or preempt, the currently active thread when it's time for another to get a turn. This creates a more even distribution of time amongst the different applications that are running concurrently.

In Win32, a process starts off initially as a single thread, but it can generate additional threads to perform background tasks such as formatting a disk or recalculating a spreadsheet. Each thread is executed (and multi-tasked) independently, as if it were a separate program. By splitting the processor time among concurrent threads, Windows creates the illusion that the threads are running in parallel. On a machine with multiple processors, Windows really does run two or more threads at the same time by assigning different threads to different processors (symmetric multi-processing (SMP)).

In the Windows 2000 environment, it is the thread, not the process or task, that is the unit of execution. If an application wants to do several things at once, it simply dedicates a thread to each job. The operating system allocates the appropriate processor time to the thread.

It is up to the operating system to decide which thread to execute next and how long to let it run. There are many things that need to be taken into consideration when scheduling threads. The primary consideration in scheduling threads for execution is each thread's execution priority. Windows 2000 assigns each thread a priority value from 0 to 31, with higher numbers indicating higher priority. Priority 31 is reserved for extremely critical tasks such as real-time data attainment, while priority 0 is used by the operating system for certain idle-time tasks that are performed only when nothing else is going on. Most threads run at priority levels from 7 to 11. The operating system's scheduler evaluates all the threads in the system and allocates processor time to the one with the highest priority. (This happens about every few milliseconds.) If two or more threads have the same priority, the one that has been executed least recently is executed next. High-priority threads are always executed before low-priority threads, and threads with low priority never preempt threads with high priority.

A very interesting way to watch multi-threading in action is to open up the System Monitor. One of the things that the System Monitor will show you is the number of threads running on the system. The Windows operating system uses threads itself. You can tell this because even if the System Monitor is the only thing running, you'll never see the thread count drop below 12 or 13. Windows uses threads for things like fault handling, and the Taskbar.

Threads can sometimes cause problems for an operating system. Two problems that can arise are called starvation and deadlock. Starvation occurs when one or more threads in an application are blocked from gaining access to a resource and thus cannot make progress. Deadlock is the ultimate form of starvation. Deadlock occurs when two or more threads are waiting on a condition that cannot be satisfied. Deadlock most often occurs when two (or more) threads are each waiting for the other to do something. Because Windows 2000 is designed to run on single and multi-processor environments, it is susceptible to deadlocks.

Deadlock

Deadlock in Win32
 applications can be dealt with by the operating system by mutual exclusion or deadlock avoidance. Mutual exclusion is designed to guarantee that certain sections of code (critical sections) will not be executed by more than one process simultaneously. These sections of code usually access shared variables or shared hardware. Windows 2000 uses a multiprocessor mutual exclusion mechanism called spinlocks, which stall the processor until a lock is achieved for a critical section. Before entering a critical section, the kernel must acquire a spinlock associated with the protected resource. If the spinlock isn’t free, the kernel keeps trying to acquire the lock until it succeeds. All other activity on the processor ceases when a thread is trying to acquire a spinlock. Therefore a thread that holds a spinlock is never preempted but is allowed to continue execution so that it will release the lock quickly. In order to ensure a deadlock free execution, the following conditions must be met. First, the protected resource must be accessed quickly and without complicated interactions with other code. Second, the critical section code cannot be paged out of memory, make references to pageable data, or call external procedures and can’t generate interrupts or exceptions. There is no such thing as global critical section, which, if claimed by a thread will suspend all threads in the system. An application causing a deadlock will not hang the entire system but only the ones involved with its critical section. So application programs need to be developed with the possibility of deadlock in mind if they are using shareable resources. It is quite difficult however to predict these situations within complex programs, unless there is a way to analyze them. DLDETECT.EXE is a Win32-based application that can be used to effectively analyze and design multithreaded applications, thus helping you detect and eliminate deadlock from your program.

Some say it is up to the operating system to prevent deadlock completely, that a good operating system should handle deadlock detection and prevention. Microsoft would argue that it is the responsibility of the application programmer to ensure that the code is checked for the possibility of deadlock when using the WIN32 API from Microsoft.

Allowable Thread States

Ready: The thread is in main memory and available for execution. The microkernel dispatcher keeps track of all ready threads and schedules in priority order.

Standby: A standby thread has been selected to run next on a particular processor. The thread waits in this state until that processor is made available. If the standby thread's priority is high enough, the running thread on that processor may be preempted in favor of the standby thread. Otherwise, the standby thread waits until the running thread blocks or finishes its time slice.

Running: Once the microkernel performs a thread or process switch, the standby thread enters the running state and begins execution and continues execution until it is preempted, exhausts its time slice, blocks, or terminates. In the first two cases, it goes back to the ready state.

Waiting (Blocked): A thread enters the waiting state when (1) it is blocked on an event (e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an environment subsystem directs the thread to suspend itself. When the waiting condition is satisfied, the thread moves to the Ready state if all of its resources are available.

Transition: A thread enters this state after waiting if it is ready to run but the resources are not available.

Terminated (Exit): A thread can be terminated by itself, by another thread, or when its parent process terminates. Once housekeeping chores are completed, the thread is removed from the system, or it may be retained by the executive for future re-initialization.

[image: image1.jpg]Runnable

Pick to Standby
= Switeh
Preemptea
Ready Running
Resource Unblock/Resume [rerminate
Block
Transition Waiting Terminated

Unblock
Resource Not Avallablle

Not Runnable

Figure 4.14 Windows 2000 Thread States

Figure 1 Thread States

Facilities for Mutual Exclusion and Synchronization

Windows 2000 provides synchronization among threads as part of the object architecture. It has a family of synchronization objects.

There are two levels of mutual exclusion and synchronization in Windows 2000. The first involves the threads of the kernel. The second is the mutual exclusion and synchronization mechanisms that the kernel provides to user mode threads (from programmers).

Synchronization of the kernel uses a change in the Interrupt Request Level (IRQL) and possibly an object called a spinlock. A spinlock is a locking object that is associated with a global data type, such as a dispatcher queue. The spinlock is used in a multiprocessor system to enforce mutual exclusion for the kernel’s critical sections. The spinlock is only used on multiprocessor hardware systems since in uniprocessor systems only a change in the level of the IRQL (Interrupt Request Level) is needed. The IRQL is raised on the processor to a point that any interrupts coming in will be masked and will not interrupt the code as it executes. However, when you have multiple processors, changing the IRQL level on one processor does not prevent interfering code on another processor from executing. Thus, something extra is needed to enforce mutual exclusion. That is where spinlocks come in. Any processor that wants to run code in a critical section of the kernel must acquire a spinlock object.

Software outside the kernel, in user mode, also needs synchronization mechanisms. Spinlocks do not solve the problem of synchronization for user programs. More types of synchronization than just mutual exclusion are needed, and spinlocks are only used in limited situations since they stall the processor as it waits to acquire the object. Thus, more synchronization objects (also called “dispatcher objects”) are provided in user mode.

A thread in user mode synchronizes on a synchronization object by waiting on the object’s handle. It accomplishes this by passing to one of the wait system services of the kernel a handle to the object it wants to wait on. This causes the kernel to suspend the thread and change its state from running to waiting as it waits to own the object. It is no longer considered for execution. A synchronization object is in one of two states at any given moment. It is either signaled or non-signaled. When the object is moved from the non-signaled state to the signaled state then the threads waiting on that object are moved from the waiting state to the running state.

Windows 2000 uses a variety of objects, to give programmers the options to enforce mutual exclusion and allow synchronization. The main types are
:

1. Critical Section – This structure serializes the access of multiple threads to a common resource or to a portion of code by allowing access to the resource to only one thread at a time. It is fast relative to other synchronization objects but can only be used for the threads within a process. It has two important methods: one to allow a thread to request and (if currently used) to wait and the second to create a critical section variable in the resource’s access member function. Examples of protected resources are common data and sections of code.

2. Mutex – This object enforces mutual exclusion by forcing each thread to own the mutex object before it can access the associated resource. It can only be owned by one thread at a time. This is very similar to the critical section except that it can be used across processes instead of just for the threads within a process.

3. Semaphore – This is used to control access to a resource by limiting the access to a certain number of threads (as opposed to critical sections and mutexes which let only one thread at a time access a resource or section of code). A semaphore has what is called a resource counter. Every thread that wants access to the resource waits for the semaphore and the resource counter is decremented by one. If the counter reaches 0 then future requests for the resource are denied. Thus only a limited number of threads are allowed access to the resource, preventing deadlock and starvation. When a thread is done with the resource then the resource counter is incremented by one allowing another resource to have access. Two important functions are to create a semaphore and set the resource count and another to open a semaphore. This allows a thread to attempt access to the semaphore’s resource.

4. Event – One or more threads can wait for this object. It notifies waiting threads when the given event occurs.

5. Timer – A timer sends out a notice to registered objects (threads) every time period. They are usually used when a number of activities have to be started in a synchronous manner.

Memory Management in Windows 2000

Windows 2000 implements a virtual memory management system that integrates the use of paging. Based on a linear, 32-bit address space, Windows 2000 allocates half this space to processes for private storage and allocates the other half for use by the operating system.
 The memory manager is responsible for allocating, deallocating, and managing the virtual memory in the system. Under this broad responsibility, such tasks as mapping files into memory, sharing memory between processes, and protecting virtual pages of memory are included
.

One of the important jobs of the memory manager is mapping files into memory. In order to conserve space in memory, only portions of objects that the process needs can be mapped into memory. The memory manager simply obtains the needed objects and creates individual views of those objects, which include only the needed portions of those objects. The manager then loads those portions into memory for use by the process. Thus, file mapping provides greater utilization of the memory space that Windows 2000 provides.

In regard to paging, Windows 2000 uses a demand-paging algorithm to load pages into memory. When a thread receives a page fault, the necessary page is loaded into memory along with several other pages that follow that page. By loading clusters of virtual pages, Windows 2000 attempts to minimize disk reads associated with page faults. Hopefully, by loading extra pages, page faults will occur less often.

File Management under Windows 2000

Windows 2000’s native file system is called NTFS 5.0 (Windows NT File System version 5.0), which extends the capabilities and features of NTFS version 4.0. Some of features of NTFS 5.0 are disk quota support, distributed file system, distributed link tracking, distributed authoring and versioning, content indexing, encryption, removable and remote storage, graphical disk management, file system recovery, file compression, volume mount points, and file/folder permissions
. NTFS is a robust file system that provides all the features of earlier Windows legacy file systems, such as Fat and Fat32, but adds newer features needed in the server or corporate environment. Windows 2000 fully supports multiple file systems, including FAT, FAT32, CDFS, NFS, UDF, and NTFS 5.0.

In Windows 2000, with NTFS, files have close to 50 properties that are completely accessible and searchable. Properties like “Access” (last time a document was accessed, “AllocSize” (disk space allocated to a document), “directory” (physical path to file), and more
. Services included in Windows 2000 allow indexing of these properties to speed up queries, file sorting, and cataloguing. These features allow users to find their files faster, track changes, and filter out old files.

The most important feature of NTFS is the ability to set permissions on both folders and files to allow access to data. Using Access Control Lists (ACLs), a user or administrator can set permissions on files and folders to restrict access to data. These features allow such services, like a Web or FTP server to prevent unauthorized access to information on the computer. NTFS permissions are maintained by the operating system; therefore, if the drive is taken out of the computer and put into another computer, the permissions are useless.

Encryption in NTFS solves that problem of removing a drive from a computer and using it in another. The Encrypting File System (EFS), which is part of NTFS, allows the encryption of files with 128-bit encryption for totally secure file protection. Encrypted files are totally transparent to users, which means that a user doesn’t have to perform any special tasks to work with encrypted files. Encryption prevents uses that gain unauthorized access to a system from accessing files
.

Another feature of NTFS is quota management. This includes setting limits on the amount of disk storage space a user can use. There are two parts to quota management, one is the actual limit of space used, and the other is the even that happens when a user get close to or exceeds the specified limit. To set quotas on the file system in Windows 2000, you must be defined as an administrator on the computer that the volume exists. Quotas are useful in the server environment in which the system administrator wants to maintain a fair space policy through out the entire system
.

NTFS is designed to make the job of system administrators easier and to make it easier for users to get their work done. With NTFS 5.0, many improvements are made to the file system to make life easier on those to use the computer and to prevent loss of data.

Process Management Data Structures

A process block called the EPROCESS block represents every process run under Windows 2000. Figure 1 gives a visualization of what the EPROCESS block looks like. Within this block is a Kernel process block, quota block, process environment block (PEB), Win32 subsystem process block and various other structures holding information about memory management. Table 1, below, lists the contents of the EPROCESS block and the purpose of each structure within the block. Together these structures allow the system to manage the process and make sure it does not try to perform any illegal operations. By this I am talking about invalid memory references, or requesting more memory then it is allowed. The EPROCESS block also provides information on the parent process ID so that the parent can terminate or otherwise manipulate the state of the process if it desires to do so
[image: image2.jpg]Kernelprocess tock (or PCS)

Process D

Paent process D

Extsatus

Creste snd estimes

Poaciveprocessieas—| Neprocess oo [—»[eprocessh

Quata boek

4emory managament nfcematen

Excepton part

Detugger port

— T
—

Handisate]

Device map.

Process envicament bock

Image iename

Image base asdress

Process prirky lass|

V12 process oo

pe—
[— T

Figure 2 Visualization of EPROCESS block (taken from the Microsoft publication: Inside Microsoft® Windows® 2000, Third Edition)

Memory Management Data Structures

Figure 1 also mentions some of the data structures that Windows 2000 uses for memory management. These structures include the Virtual Address Space descriptors, Working Set information and the Virtual Memory information structures.

The Virtual Address Space structure holds information pertaining to the address space occupied by the process. This structure allows Windows 2000 to maintain separate user and system address space, so that critical data stays secure.

The Working Set structure provides information about current, peak, minimum, and maximum working set size, last trim time, page fault count; memory priority, outswap flags, and page fault history. This allows Windows 2000 to keep track of how a process is using Virtual Memory.

The Virtual Memory structure holds information on current and peak virtual size, page file usage, and hardware page table entry for process page directory. This structure is used whenever a page is referenced and the system needs to look up its physical address based on a virtual address.

These structures work together to allow Windows 2000 to maintain data integrity and allow for multiprocessing. They are used by the system to maintain internal integrity by keeping a process’ data separate from all other processes. These structures also keep processes from addressing memory reserved for the system or some other process.

Table 1 Contents of EPROCESS block (taken from the Microsoft publication: Inside Microsoft® Windows® 2000, Third Edition)

Element
Purpose

Kernel process (KPROCESS) block
Common dispatcher object header, pointer to the process page directory, list of kernel thread (KTHREAD) blocks belonging to the process, default base priority, quantum, affinity mask, and total kernel and user time for the threads in the process.

Process identification
Unique process ID, creating process ID, name of image being run, window station process is running on.

Quota block
Limits on non-paged pool, paged pool, and page file usage plus current and peak process non-paged and paged pool usage. (Note: Several processes can share this structure: all the system processes point to the single system wide default quota block; all the processes in the interactive session share a single quota block Winlogon sets up.

Virtual address space descriptors (VADs)
Series of data structures that describes the status of the portions of the address space that exist in the process.

Working set information
Pointer to working set list (MMWSL structure); current, peak, minimum, and maximum working set size; last trim time; page fault count; memory priority; outswap flags; page fault history.

Virtual memory information
Current and peak virtual size, page file usage, hardware page table entry for process page directory.

Exception local procedure call (LPC) port
Interprocess communication channel to which the process manager sends a message when one of the process's threads causes an exception.

Debugging LPC port
Interprocess communication channel to which the process manager sends a message when one of the process's threads causes a debug event.

Access token (ACCESS_TOKEN)
Executive object describing the security profile of this process.

Handle table
Address of per-process handle table.

Device map
Address of object directory to resolve device name references in (supports multiple users).

Process environment block (PEB)
Image information (base address, version numbers, module list), process heap information, and thread-local storage utilization. (Note: The pointers to the process heaps start at the first byte after the PEB.)

Win32 subsystem process block (W32PROCESS)
Process details needed by the kernel-mode component of the Win32 subsystem.

Scheduling

Single Processor

Windows 2000 is designed to be highly responsive to the needs of a single user in a highly interactive environment or in the role of a server. Win2K makes use of a priority-driven preemptive scheduler with a flexible system of priority levels that includes round-robin scheduling within each level and, for some levels, dynamic priority variation on the basis of their current thread activity.

Priorities in Win2K are organized into two classes: real time and variable. Each class consists of 16 priority levels. The real-time class is for threads requiring immediate attention. Since Win2K is priority driven, threads of lower priority are preempted so the higher priority threads can have access to the processor when they are ready.

Priorities are handled different in the two classes. In the real time class, where all threads have a fixed priority that never changes, threads of equal priority are in a round-robin queue. In the variable priority class, a thread’s priority begins at some initial assigned value and then may change, up or down, during the thread’s lifetime. Thus, there is a FIFO queue at each priority level, but a process may migrate to one of the other queues within the variable priority class. However, a thread at priority level 15 cannot be promoted to level 16 or any other level in the real time class. The initial priority of a thread in the variable priority class is determined by the process base priority and the thread base priority. One of the attributes of a process object is process base priority, which has a value between 0 and 15. The thread’s base priority, which is relative to the process base priority, can be equal to that of its process or within two levels above or below that of the process.

Once a thread in the variable class has been activated, its actual priority may fluctuate between the thread’s base priority and the upper limit of 15. If a thread is interrupted because it has used up its current time quantum, the Win2K executive lowers its priority. If a thread is interrupted to wait on an I/O event, the Win2K executive raises its priority. Hence, processor-bound threads tend toward lower priorities and I/O-bound threads then toward higher priorities. Interactive threads tend to have the highest priorities within the variable priority class.

Multiprocessor

In a multiprocessor system with N processors, the (N-1) highest priority threads are always active, running exclusively on the (N-1) extra processors. The remaining, lower-priority, threads share the single remaining processor. However, if a thread is ready to execute but the only available processors are not in its processor affinity set, then that thread is forced to wait and the executive schedules the next available thread.

Bibliography

Foley, Mary Jo (2001). “Windows 2000 sales figures only tell part of story.” URL: http://news.cnet.com/news/0-1003-201-4745235-0.html

Microsoft Press (2000). “Best Performance: Windows 2000 Professional.” URL: http://www.microsoft.com/TechNet/win2000/bestperf.asp

Microsoft Corporation (2000). “Disk and file management features.” URL: http://www.microsoft.com/windows2000/en/server/help/default.asp?url=/WINDOWS2000/en/server/help/File_Services.htm

Microsoft Corporation (2000). “Disk quotas overview.” URL: http://www.microsoft.com/windows2000/en/professional/help/default.asp?url=/WINDOWS2000/en/professional/help/nt_diskquota_overview.htm

Microsoft Corporation (2001). "Examining the Windows 2000 Architecture."

URL: http://www.microsoft.com/TechNet/win2000/exam.asp
Microsoft Corporation (2000). "File encryption overview."

URL:http://www.microsoft.com/windows2000/en/professional/help/default.asp?url=/WINDOWS2000/en/professional/help/encrypt_overview.htm

Microsoft Corporation. “Inside Microsoft® Windows® 2000, Third Edition.”

URL: http://mspress.microsoft.com/prod/books/sampchap/4354.htm#152

Microsoft Corporation (2001). “Windows 2000 Features at a Glance.”

URL: http://www.microsoft.com/windows2000/guide/professional/overview/features/default.asp

Microsoft Corporation (2001). “Windows 2000 Professional: Most Reliable Windows Ever.” URL: http://www.microsoft.com/directaccess/products/win2000.wks/reliable.asp#more

Rajagopal, Raj and Subodh Monica (2001). Windows 2000 Developer Guide. Berkley,CA: Osborne/McGraw Hill.

Russinovich, Mark and David A. Solomon (2000). Inside Microsoft Windows 2000, Third Edition. Washington: Microsoft Press.
Stallings, William (2001). Operating Systems. Upper Saddle River, NJ: Prentice Hall.

� Microsoft Corporation (2001). “Windows 2000 Features at a Glance.” URL: http://www.microsoft.com/windows2000/guide/professional/overview/features/default.asp�

� Microsoft Corporation (2001). “Windows 2000 Professional: Most Reliable Windows Ever.” URL: http://www.microsoft.com/directaccess/products/win2000.wks/reliable.asp#more�

� Foley, Mary Jo (2001). “Windows 2000 sales figures only tell part of story.” URL: http://news.cnet.com/news/0-1003-201-4745235-0.html

� Microsoft Corporation (2001). "Examining the Windows 2000 Architecture."

URL: � HYPERLINK "http://www.microsoft.com/TechNet/win2000/exam.asp" ��http://www.microsoft.com/TechNet/win2000/exam.asp�

� Microsoft Corp. "Examining"

� Microsoft Corp. "Examining"

�� HYPERLINK "http://www.microsoft.com/TechNet/win2000/exam.asp" �� Microsoft Corp. "Examining" �

� Microsoft Corp. "Examining"

� Microsoft Corp. "Examining"

� Microsoft Corp. "Examining"

� Microsoft Corp. "Examining"

� Microsoft Corp. "Examining"

13 Microsoft Corporation (2001). URL: http://msdn.microsoft.com/library/psdk/winbase/prothred_86sz.htm

� Microsoft Corporation (2001). URLs: http://msdn.microsoft.com/library/techart/msdn_deadlock.htm,

http://msdn.microsoft.com/library/techart/msdn_dldwork.htm,

http://msdn.microsoft.com/library/psdk/winbase/prothred_86sz.htm

� Russinovich, Mark and David A. Solomon (2000). Inside Microsoft Windows 2000, Third Edition. Washington: Microsoft Press. Pg.154

� Russinovich and Solomon, 154-156

� Russinovich and Solomon, 158

� Russinovich and Solomon, 160

� Rajagopal, Raj and Subodh Monica (2001). Windows 2000 Developer Guide. Berkley,CA: Osborne/McGraw Hill. Pg.347-394

� Russinovich and Solomon, 7

� Russinovich and Solomon, 389

� Russinovich and Solomon, 394

� Russinovich and Solomon, 456

� Microsoft Corporation (2000). “Disk and file management features.” URL: http://www.microsoft.com/windows2000/en/server/help/default.asp?url=/WINDOWS2000/en/server/help/File_Services.htm

� Microsoft Press (2000). “Best Performance: Windows 2000 Professional.” URL: http://www.microsoft.com/TechNet/win2000/bestperf.asp

� Microsoft Corporation (2000). “File encryption overview.’ URL: http://www.microsoft.com/windows2000/en/professional/help/default.asp?url=/WINDOWS2000/en/professional/help/encrypt_overview.htm

� Microsoft Corporation (2000). “Disk quotas overview.” URL: http://www.microsoft.com/windows2000/en/professional/help/default.asp?url=/WINDOWS2000/en/professional/help/nt_diskquota_overview.htm

� Stallings, William (2001). Operating Systems. Upper Saddle River, NJ: Prentice Hall.

PAGE
1

